The problem I have is that I need to do about 40+ conversions to convert loosely typed info into strongly typed info stored in db, xml file, etc.
I'm plan to tag each type with a tuple i.e. a transformational form like this:
host.name.string:host.dotquad.string
which will offer a conversion from the input to an output form. For example, the name stored in the host field of type string, the input is converted into a dotquad notation of type string and stored back into host field. More complex conversions may need several steps, with each step being accomplished by a method call, hence method chaining.
Examining further the example above, the tuple 'host.name.string' with the field host of name www.domain.com. A DNS lookup is done to covert domain name to IP address. Another method is applied to change the type returned by the DNS lookup into the internal type of dotquad of type string. For this transformation, there is 4 seperate methods called to convert from one tuple into another. Some other conversions may require more steps.
Ideally I would like an small example of how method chains are constructed at runtime. Development time method chaining is relatively trivial, but would require pages and pages of code to cover all possibilites, with 40+ conversions.
One way I thought of doing is, is parsing the tuples at startup, and writing the chains out to an assembly, compiling it, then using reflection to load/access. Its would be really ugly and negate the performance increases i'm hoping to gain.
I'm using Mono, so no C# 4.0
Any help would be appreciated.
Bob.
Here is a quick and dirty solution using LINQ Expressions. You have indicated that you want C# 2.0, this is 3.5, but it does run on Mono 2.6. The method chaining is a bit hacky as i didn't exactly know how your version works, so you might need to tweak the expression code to suit.
The real magic really happens in the Chainer class, which takes a collection of strings, which represent the MethodChain subclass. Take a collection like this:
{
"string",
"string",
"int"
}
This will generate a chain like this:
new StringChain(new StringChain(new IntChain()));
Chainer.CreateChain will return a lambda that calls MethodChain.Execute(). Because Chainer.CreateChain uses a bit of reflection, it's slow, but it only needs to run once for each expression chain. The execution of the lambda is nearly as fast as calling actual code.
Hope you can fit this into your architecture.
public abstract class MethodChain {
private MethodChain[] m_methods;
private object m_Result;
public MethodChain(params MethodChain[] methods) {
m_methods = methods;
}
public MethodChain Execute(object expression) {
if(m_methods != null) {
foreach(var method in m_methods) {
expression = method.Execute(expression).GetResult<object>();
}
}
m_Result = ExecuteInternal(expression);
return this;
}
protected abstract object ExecuteInternal(object expression);
public T GetResult<T>() {
return (T)m_Result;
}
}
public class IntChain : MethodChain {
public IntChain(params MethodChain[] methods)
: base(methods) {
}
protected override object ExecuteInternal(object expression) {
return int.Parse(expression as string);
}
}
public class StringChain : MethodChain {
public StringChain(params MethodChain[] methods):base(methods) {
}
protected override object ExecuteInternal(object expression) {
return (expression as string).Trim();
}
}
public class Chainer {
/// <summary>
/// methods are executed from back to front, so methods[1] will call method[0].Execute before executing itself
/// </summary>
/// <param name="methods"></param>
/// <returns></returns>
public Func<object, MethodChain> CreateChain(IEnumerable<string> methods) {
Expression expr = null;
foreach(var methodName in methods.Reverse()) {
ConstructorInfo cInfo= null;
switch(methodName.ToLower()) {
case "string":
cInfo = typeof(StringChain).GetConstructor(new []{typeof(MethodChain[])});
break;
case "int":
cInfo = typeof(IntChain).GetConstructor(new[] { typeof(MethodChain[]) });
break;
}
if(cInfo == null)
continue;
if(expr != null)
expr = Expression.New(cInfo, Expression.NewArrayInit( typeof(MethodChain), Expression.Convert(expr, typeof(MethodChain))));
else
expr = Expression.New(cInfo, Expression.Constant(null, typeof(MethodChain[])));
}
var objParam = Expression.Parameter(typeof(object));
var methodExpr = Expression.Call(expr, typeof(MethodChain).GetMethod("Execute"), objParam);
Func<object, MethodChain> lambda = Expression.Lambda<Func<object, MethodChain>>(methodExpr, objParam).Compile();
return lambda;
}
[TestMethod]
public void ExprTest() {
Chainer chainer = new Chainer();
var lambda = chainer.CreateChain(new[] { "int", "string" });
var result = lambda(" 34 ").GetResult<int>();
Assert.AreEqual(34, result);
}
}
The command pattern would fit here. What you could do is queue up commands as you need different operations performed on the different data types. Those messages could then all be processed and call the appropriate methods when you're ready later on.
This pattern can be implemented in .NET 2.0.
Do you really need to do this at execution time? Can't you create the combination of operations using code generation?
Let me elaborate:
Assuming you have a class called Conversions which contains all the 40+ convertions you mentioned like this:
//just pseudo code..
class conversions{
string host_name(string input){}
string host_dotquad(string input){}
int type_convert(string input){}
float type_convert(string input){}
float increment_float(float input){}
}
Write a simple console app or something similar which uses reflection to generate code for methods like this:
execute_host_name(string input, Queue<string> conversionQueue)
{
string ouput = conversions.host_name(input);
if(conversionQueue.Count == 0)
return output;
switch(conversionQueue.dequeue())
{
// generate case statements only for methods that take in
// a string as parameter because the host_name method returns a string.
case "host.dotquad": return execute_host_dotquad(output,conversionQueue);
case "type.convert": return execute_type_convert(output, conversionQueue);
default: // exception...
}
}
Wrap all this in a Nice little execute method like this:
object execute(string input, string [] conversions)
{
Queue<string> conversionQueue = //create the queue..
case(conversionQueue.dequeue())
{
case "host.name": return execute_host_name(output,conversionQueue);
case "host.dotquad": return execute_host_dotquad(output,conversionQueue);
case "type.convert": return execute_type_convert(output, conversionQueue);
default: // exception...
}
}
This code generation application need to be executed only when your method signatures changes or when you decide to add new transformations.
Main advantages:
No runtime overhead
Easy to add/delete/change the conversions (code generator will take care of the code changes :) )
What do you think?
I apologize for the long code dump and the fact that it is in Java, rather than C#, but I found your problem quite interesting and I do not have much C# experience. Hopefully you will be able to adapt this solution without difficulty.
One approach to solving your problem is to create a cost for each conversion -- usually this is related to the accuracy of the conversion -- and then perform a search to find the best possible conversion sequence to get from one type to another.
The reason for needing a cost function is to choose among multiple conversion paths. For example, converting from an integer to a string is lossless, but there is no guarantee that every string can be represented by an integer. So, if you had two conversion chains
string -> integer -> float -> decimal
string -> float -> decimal
You would want to select the second one because it will reduce the chance of a conversion failure.
The Java code below implements such a scheme and performs a best-first search to find an optimal conversion sequence. I hope you find it useful. Running the code produces the following output:
> No conversion possible from string to integer
> The optimal conversion sequence from string to host.dotquad.string is:
> string to host.name.string, cost = -1.609438
> host.name.string to host.dns, cost = -1.609438 *PERFECT*
> host.dns to host.dotquad, cost = -1.832581
> host.dotquad to host.dotquad.string, cost = -1.832581 *PERFECT*
Here is the Java code.
/**
* Use best-first search to find an optimal sequence of operations for
* performing a type conversion with maximum fidelity.
*/
import java.util.*;
public class TypeConversion {
/**
* Define a type-conversion interface. It converts between to
* user-defined types and provides a measure of fidelity (accuracy)
* of the conversion.
*/
interface ITypeConverter<T, F> {
public T convert(F from);
public double fidelity();
// Could use reflection instead of handling this explicitly
public String getSourceType();
public String getTargetType();
}
/**
* Create a set of user-defined types.
*/
class HostName {
public String hostName;
public HostName(String hostName) {
this.hostName = hostName;
}
}
class DnsLookup {
public String ipAddress;
public DnsLookup(HostName hostName) {
this.ipAddress = doDNSLookup(hostName);
}
private String doDNSLookup(HostName hostName) {
return "127.0.0.1";
}
}
class DottedQuad {
public int[] quad = new int[4];
public DottedQuad(DnsLookup lookup) {
String[] split = lookup.ipAddress.split(".");
for ( int i = 0; i < 4; i++ )
quad[i] = Integer.parseInt( split[i] );
}
}
/**
* Define a set of conversion operations between the types. We only
* implement a minimal number for brevity, but this could be expanded.
*
* We start by creating some broad classes to differentiate among
* perfect, good and bad conversions.
*/
abstract class PerfectTypeConversion<T, F> implements ITypeConverter<T, F> {
public abstract T convert(F from);
public double fidelity() { return 1.0; }
}
abstract class GoodTypeConversion<T, F> implements ITypeConverter<T, F> {
public abstract T convert(F from);
public double fidelity() { return 0.8; }
}
abstract class BadTypeConversion<T, F> implements ITypeConverter<T, F> {
public abstract T convert(F from);
public double fidelity() { return 0.2; }
}
/**
* Concrete classes that do the actual conversions.
*/
class StringToHostName extends BadTypeConversion<HostName, String> {
public HostName convert(String from) { return new HostName(from); }
public String getSourceType() { return "string"; }
public String getTargetType() { return "host.name.string"; }
}
class HostNameToDnsLookup extends PerfectTypeConversion<DnsLookup, HostName> {
public DnsLookup convert(HostName from) { return new DnsLookup(from); }
public String getSourceType() { return "host.name.string"; }
public String getTargetType() { return "host.dns"; }
}
class DnsLookupToDottedQuad extends GoodTypeConversion<DottedQuad, DnsLookup> {
public DottedQuad convert(DnsLookup from) { return new DottedQuad(from); }
public String getSourceType() { return "host.dns"; }
public String getTargetType() { return "host.dotquad"; }
}
class DottedQuadToString extends PerfectTypeConversion<String, DottedQuad> {
public String convert(DottedQuad f) {
return f.quad[0] + "." + f.quad[1] + "." + f.quad[2] + "." + f.quad[3];
}
public String getSourceType() { return "host.dotquad"; }
public String getTargetType() { return "host.dotquad.string"; }
}
/**
* To find the best conversion sequence, we need to instantiate
* a list of converters.
*/
ITypeConverter<?,?> converters[] =
{
new StringToHostName(),
new HostNameToDnsLookup(),
new DnsLookupToDottedQuad(),
new DottedQuadToString()
};
Map<String, List<ITypeConverter<?,?>>> fromMap =
new HashMap<String, List<ITypeConverter<?,?>>>();
public void buildConversionMap()
{
for ( ITypeConverter<?,?> converter : converters )
{
String type = converter.getSourceType();
if ( !fromMap.containsKey( type )) {
fromMap.put( type, new ArrayList<ITypeConverter<?,?>>());
}
fromMap.get(type).add(converter);
}
}
public class Tuple implements Comparable<Tuple>
{
public String type;
public double cost;
public Tuple parent;
public Tuple(String type, double cost, Tuple parent) {
this.type = type;
this.cost = cost;
this.parent = parent;
}
public int compareTo(Tuple o) {
return Double.compare( cost, o.cost );
}
}
public Tuple findOptimalConversionSequence(String from, String target)
{
PriorityQueue<Tuple> queue = new PriorityQueue<Tuple>();
// Add a dummy start node to the queue
queue.add( new Tuple( from, 0.0, null ));
// Perform the search
while ( !queue.isEmpty() )
{
// Pop the most promising candidate from the list
Tuple tuple = queue.remove();
// If the type matches the target type, return
if ( tuple.type == target )
return tuple;
// If we have reached a dead-end, backtrack
if ( !fromMap.containsKey( tuple.type ))
continue;
// Otherwise get all of the possible conversions to
// perform next and add their costs
for ( ITypeConverter<?,?> converter : fromMap.get( tuple.type ))
{
String type = converter.getTargetType();
double cost = tuple.cost + Math.log( converter.fidelity() );
queue.add( new Tuple( type, cost, tuple ));
}
}
// No solution
return null;
}
public static void convert(String from, String target)
{
TypeConversion tc = new TypeConversion();
// Build a conversion lookup table
tc.buildConversionMap();
// Find the tail of the optimal conversion chain.
Tuple tail = tc.findOptimalConversionSequence( from, target );
if ( tail == null ) {
System.out.println( "No conversion possible from " + from + " to " + target );
return;
}
// Reconstruct the conversion path (skip dummy node)
List<Tuple> solution = new ArrayList<Tuple>();
for ( ; tail.parent != null ; tail = tail.parent )
solution.add( tail );
Collections.reverse( solution );
StringBuilder sb = new StringBuilder();
Formatter formatter = new Formatter(sb);
sb.append( "The optimal conversion sequence from " + from + " to " + target + " is:\n" );
for ( Tuple tuple : solution ) {
formatter.format( "%20s to %20s, cost = %f", tuple.parent.type, tuple.type, tuple.cost );
if ( tuple.cost == tuple.parent.cost )
sb.append( " *PERFECT*");
sb.append( "\n" );
}
System.out.println( sb.toString() );
}
public static void main(String[] args)
{
// Run two tests
convert( "string", "integer" );
convert( "string", "host.dotquad.string" );
}
}
Related
I have a scenario where i need to use different mono which could return me errors and set map values to null if error is returned.
Ex:
Mono<A> a=Some api call;
Mono<A> b=Some api giving error;
Mono<A> c=Some api call;
Now i want to set the resulting response to map
Map<String,A> m=new HashMap<>();
m.put("a",a);
m.put("b",null);
m.put("c",c);
Can anyone help on how to do all this in reactive non blocking way.
I tried zip but it will not execute if any of the api return error or if i use onErrorReturn(null).
Thanks in advance
To solve your problems, you will have to use some tricks. The problem is that :
Giving an empty mono or mono that ends in error cancel zip operation (source: Mono#zip javadoc)
Reactive streams do not allow null values (source: Reactive stream spec, table 2: Subscribers, bullet 13)
Also, note that putting a null value in a hash map is the same as cancelling any previous value associated with the key (it's important in case you're updating an existing map).
Now, to bypass your problem, you can add an abstraction layer, and wrap your values in domain objects.
You can have an object that represents a query, another a valid result, and the last one will mirror an error.
With that, you can design publishers that will always succeed with non null values.
That's a technic used a lot in functional programming : common errors are part of the (one possible) result value.
Now, let's see the example that create a new Map from multiple Monos:
import reactor.core.publisher.Flux;
import reactor.core.publisher.Mono;
import java.time.Duration;
import java.util.Map;
public class BypassMonoError {
/**
* An object identified by a key. It serves to track which key to associate to computed values
* #param <K> Type of the key
*/
static class Identified<K> {
protected final K id;
Identified(K id) {
this.id = id;
}
public K getId() {
return id;
}
}
/**
* Describe the result value of an operation, along with the key associated to it.
*
* #param <K> Type of the identifier of the result
* #param <V> Value type
*/
static abstract class Result<K, V> extends Identified<K> {
Result(K id) {
super(id);
}
/**
*
* #return Computed value on success, or null if the operation has failed. Note that here, we cannot tell from
* a success returning a null value or an error
*/
abstract V getOrNull();
}
static final class Success<K, V> extends Result<K, V> {
private final V value;
Success(K id, V value) {
super(id);
this.value = value;
}
#Override
V getOrNull() {
return value;
}
}
static final class Error<K, V> extends Result<K, V> {
private final Exception error;
Error(K id, Exception error) {
super(id);
this.error = error;
}
#Override
V getOrNull() {
return null;
}
public Exception getError() {
return error;
}
}
/**
* A request that can asynchronously generate a result for the associated identifier.
*/
static class Query<K, V> extends Identified<K> {
private final Mono<V> worker;
Query(K id, Mono<V> worker) {
super(id);
this.worker = worker;
}
/**
* #return The operator that computes the result value. Note that any error is silently wrapped in an
* {#link Error empty result with error metadata}.
*/
public Mono<Result<K, V>> runCatching() {
return worker.<Result<K, V>>map(success -> new Success<>(id, success))
.onErrorResume(Exception.class, error -> Mono.just(new Error<K, V>(id, error)));
}
}
public static void main(String[] args) {
final Flux<Query<String, String>> queries = Flux.just(
new Query("a", Mono.just("A")),
new Query("b", Mono.error(new Exception("B"))),
new Query("c", Mono.delay(Duration.ofSeconds(1)).map(v -> "C"))
);
final Flux<Result<String, String>> results = queries.flatMap(query -> query.runCatching());
final Map<String, String> myMap = results.collectMap(Result::getId, Result::getOrNull)
.block();
for (Map.Entry<String, String> entry : myMap.entrySet()) {
System.out.printf("%s -> %s%n", entry.getKey(), entry.getValue());
}
}
}
Note : In the above example, we silently ignore any occurred error. However, when using the flux, you can test if a result is an error, and if it is, you are free to design your own error management (log, fail-first, send in another flux, etc.).
This outputs:
a -> A
b -> null
c -> C
I have not found how to save a general list of primitive types, e.g. ints, or strings, in a property of an entity. I might have missed something obvious...
https://github.com/JetBrains/xodus/wiki/Entity-Stores described that "only Java primitive types, Strings, and ComparableSet values can be used by default".
It seems not hard to convert an Iterable into a ComparableSet. However it is a Set.
I will take a look into PersistentEntityStore.registerCustomPropertyType() to see if that helps. I just feel wrong to do that to just save a list of integers.
Links seemed to be able to serve as a way of saving a list of Entitys. But it seems there is no addProperty() counterpart to addLink().
Appreciated if some one can share a way or a workaround for this, or maybe why this is not supported.
Thanks
As mentioned in the comments, one workaround I came up with was to create a ComparableList, by adopting code from ComparableSet.
The idea was to make a list that is able to convert to and from an ArrayByteIterable, and register it with .registerCustomPropertyType(). To do that, 2 classes are needed, ComparableList and ComparableListBinding. I'm sharing one iteration I used at the bottom. By the way, I made them immutable, comparing to the mutable ComparableSet. The newly implemented types should be registered once in a transaction of the store before using them.
That should allow you to store and retrieve a list. However the items in ComparableList would not get indexed as they would when saved in a ComparableSet -- there are some special treatment for ComparableSet in the entity store implementation. So without modifying the library, indexing would work only with hacks like creating another property to just index the values.
I was considering to implement a different entity store that could better support lists, on top of the xodus key-value store, bypassing the xodus entity store entirely. That might be a better solution to the list issue we are talking about here.
ComparableList:
#SuppressWarnings("unchecked")
public class ComparableList<T extends Comparable<T>> implements Comparable<ComparableList<T>>,
Iterable<T> {
#Nonnull
private final ImmutableList<T> list;
public ComparableList(#Nonnull final Iterable<T> iterable) {
list = ImmutableList.copyOf(iterable);
}
#Override
public int compareTo(#Nonnull final ComparableList<T> other) {
final Iterator<T> thisIt = list.iterator();
final Iterator<T> otherIt = other.list.iterator();
while (thisIt.hasNext() && otherIt.hasNext()) {
final int cmp = thisIt.next().compareTo(otherIt.next());
if (cmp != 0) {
return cmp;
}
}
if (thisIt.hasNext()) {
return 1;
}
if (otherIt.hasNext()) {
return -1;
}
return 0;
}
#NotNull
#Override
public Iterator<T> iterator() {
return list.iterator();
}
#Nullable
public Class<T> getItemClass() {
final Iterator<T> it = list.iterator();
return it.hasNext() ? (Class<T>) it.next().getClass() : null;
}
#Override
public String toString() {
return list.toString();
}
}
ComparableListBinding:
#SuppressWarnings({"unchecked", "rawtypes"})
public class ComparableListBinding extends ComparableBinding {
public static final ComparableListBinding INSTANCE = new ComparableListBinding();
private ComparableListBinding() {}
#Override
public ComparableList readObject(#NotNull final ByteArrayInputStream stream) {
final int valueTypeId = stream.read() ^ 0x80;
final ComparableBinding itemBinding = ComparableValueType.getPredefinedBinding(valueTypeId);
final ImmutableList.Builder<Comparable> builder = ImmutableList.builder();
while (stream.available() > 0) {
builder.add(itemBinding.readObject(stream));
}
return new ComparableList(builder.build());
}
#Override
public void writeObject(#NotNull final LightOutputStream output,
#NotNull final Comparable object) {
final ComparableList<? extends Comparable> list = (ComparableList) object;
final Class itemClass = list.getItemClass();
if (itemClass == null) {
throw new ExodusException("Attempt to write empty ComparableList");
}
final ComparableValueType type = ComparableValueType.getPredefinedType(itemClass);
output.writeByte(type.getTypeId());
final ComparableBinding itemBinding = type.getBinding();
list.forEach(o -> itemBinding.writeObject(output, o));
}
/**
* De-serializes {#linkplain ByteIterable} entry to a {#code ComparableList} value.
*
* #param entry {#linkplain ByteIterable} instance
* #return de-serialized value
*/
public static ComparableList entryToComparableList(#NotNull final ByteIterable entry) {
return (ComparableList) INSTANCE.entryToObject(entry);
}
/**
* Serializes {#code ComparableList} value to the {#linkplain ArrayByteIterable} entry.
*
* #param object value to serialize
* #return {#linkplain ArrayByteIterable} entry
*/
public static ArrayByteIterable comparableSetToEntry(#NotNull final ComparableList object) {
return INSTANCE.objectToEntry(object);
}
}
So basically, I have a situation where I want to inject primitive types into a class (i.e. a String and an Integer). You can think of a URL and port number for an application as example inputs. I have three components:
Now say I have a class, which does take in these params:
public class PrimitiveParamsDIExample {
private String a;
private Integer b;
public PrimitiveParamsDIExample(String a, Integer b) {
this.a = a;
this.b = b;
}
}
So my question here is simple. How do I inject a and b into class PrimitiveParamsDIExample?
In general, this is also asking how to inject parameters that are decided on runtime as well. If I have a and b above, read from STDIN or from an input file, they're obviously going to be different from run to run.
All the more, how do I do the above within the HK2 framework?
EDIT[02/23/15]: #jwells131313, I tried your idea, but I'm getting the following error (this one for the String param; similar one for int):
org.glassfish.hk2.api.UnsatisfiedDependencyException: There was no object available for injection at Injectee(requiredType=String,parent=PrimitiveParamsDIExample,qualifiers
I set up classes exactly as you did in your answer. I also overrode the toString() method to print both variables a and b in PrimitiveParamsDIExample. Then, I added the following in my Hk2Module class:
public class Hk2Module extends AbstractBinder {
private Properties properties;
public Hk2Module(Properties properties){
this.properties = properties;
}
#Override
protected void configure() {
bindFactory(StringAFactory.class).to(String.class).in(RequestScoped.class);
bindFactory(IntegerBFactory.class).to(Integer.class).in(RequestScoped.class);
bind(PrimitiveParamsDIExample.class).to(PrimitiveParamsDIExample.class).in(Singleton.class);
}
}
So now, I created a test class as follows:
#RunWith(JUnit4.class)
public class TestPrimitiveParamsDIExample extends Hk2Setup {
private PrimitiveParamsDIExample example;
#Before
public void setup() throws IOException {
super.setupHk2();
//example = new PrimitiveParamsDIExample();
example = serviceLocator.getService(PrimitiveParamsDIExample.class);
}
#Test
public void testPrimitiveParamsDI() {
System.out.println(example.toString());
}
}
where, Hk2Setup is as follows:
public class Hk2Setup extends TestCase{
// the name of the resource containing the default configuration properties
private static final String DEFAULT_PROPERTIES = "defaults.properties";
protected Properties config = null;
protected ServiceLocator serviceLocator;
public void setupHk2() throws IOException{
config = new Properties();
Reader defaults = Resources.asCharSource(Resources.getResource(DEFAULT_PROPERTIES), Charsets.UTF_8).openBufferedStream();
load(config, defaults);
ApplicationHandler handler = new ApplicationHandler(new MyMainApplication(config));
final ServiceLocator locator = handler.getServiceLocator();
serviceLocator = locator;
}
private static void load(Properties p, Reader r) throws IOException {
try {
p.load(r);
} finally {
Closeables.close(r, false);
}
}
}
So somewhere, the wiring is messed up for me to get an UnsatisfiedDependencyException. What have I not correctly wired up?
Thanks!
There are two ways to do this, but one isn't documented yet (though it is available... I guess I need to work on documentation again...)
I'll go through the first way here.
Basically, you can use the HK2 Factory.
Generally when you start producing Strings and ints and long and scalars like this you qualify them, so lets start with two qualifiers:
#Retention(RUNTIME)
#Target( { TYPE, METHOD, FIELD, PARAMETER })
#javax.inject.Qualifier
public #interface A {}
and
#Retention(RUNTIME)
#Target( { TYPE, METHOD, FIELD, PARAMETER })
#javax.inject.Qualifier
public #interface B {}
then write your factories:
#Singleton // or whatever scope you want
public class StringAFactory implements Factory<String> {
#PerLookup // or whatever scope, maybe this checks the timestamp?
#A // Your qualifier
public String provide() {
// Write your code to get your value...
return whatever;
}
public void dispose(String instance) {
// Probably do nothing...
}
}
and for the Integer:
#Singleton // or whatever scope you want
public class IntegerBFactory implements Factory<Integer> {
#PerLookup // or whatever scope, maybe this checks the timestamp?
#B // Your qualifier
public Integer provide() {
// Write your code to get your value...
return whatever;
}
public void dispose(String instance) {
// Probably do nothing...
}
}
Now lets re-do your original class to accept these values:
public class PrimitiveParamsDIExample {
private String a;
private int b;
#Inject
public PrimitiveParamsDIExample(#A String a, #B int b) {
this.a = a;
this.b = b;
}
}
Note I changed Integer to int, well... just because I can. You can also just use field injection or method injection in the same way. Here is field injection, method injection is an exercise for the reader:
public class PrimitiveParamsDIExample {
#Inject #A
private String a;
#Inject #B
private int b;
public PrimitiveParamsDIExample() {
}
}
There are several ways to bind factories.
In a binder: bindFactory
Using automatic class analysis: addClasses
An EDSL outside a binder: buildFactory
I need to allow my content pipeline extension to use a pattern similar to a factory. I start with a dictionary type:
public delegate T Mapper<T>(MapFactory<T> mf, XElement d);
public class MapFactory<T>
{
Dictionary<string, Mapper<T>> map = new Dictionary<string, Mapper<T>>();
public void Add(string s, Mapper<T> m)
{
map.Add(s, m);
}
public T Get(XElement xe)
{
if (xe == null) throw new ArgumentNullException(
"Invalid document");
var key = xe.Name.ToString();
if (!map.ContainsKey(key)) throw new ArgumentException(
key + " is not a valid key.");
return map[key](this, xe);
}
public IEnumerable<T> GetAll(XElement xe)
{
if (xe == null) throw new ArgumentNullException(
"Invalid document");
foreach (var e in xe.Elements())
{
var val = e.Name.ToString();
if (map.ContainsKey(val))
yield return map[val](this, e);
}
}
}
Here is one type of object I want to store:
public partial class TestContent
{
// Test type
public string title;
// Once test if true
public bool once;
// Parameters
public Dictionary<string, object> args;
public TestContent()
{
title = string.Empty;
args = new Dictionary<string, object>();
}
public TestContent(XElement xe)
{
title = xe.Name.ToString();
args = new Dictionary<string, object>();
xe.ParseAttribute("once", once);
}
}
XElement.ParseAttribute is an extension method that works as one might expect. It returns a boolean that is true if successful.
The issue is that I have many different types of tests, each of which populates the object in a way unique to the specific test. The element name is the key to MapFactory's dictionary. This type of test, while atypical, illustrates my problem.
public class LogicTest : TestBase
{
string opkey;
List<TestBase> items;
public override bool Test(BehaviorArgs args)
{
if (items == null) return false;
if (items.Count == 0) return false;
bool result = items[0].Test(args);
for (int i = 1; i < items.Count; i++)
{
bool other = items[i].Test(args);
switch (opkey)
{
case "And":
result &= other;
if (!result) return false;
break;
case "Or":
result |= other;
if (result) return true;
break;
case "Xor":
result ^= other;
break;
case "Nand":
result = !(result & other);
break;
case "Nor":
result = !(result | other);
break;
default:
result = false;
break;
}
}
return result;
}
public static TestContent Build(MapFactory<TestContent> mf, XElement xe)
{
var result = new TestContent(xe);
string key = "Or";
xe.GetAttribute("op", key);
result.args.Add("key", key);
var names = mf.GetAll(xe).ToList();
if (names.Count() < 2) throw new ArgumentException(
"LogicTest requires at least two entries.");
result.args.Add("items", names);
return result;
}
}
My actual code is more involved as the factory has two dictionaries, one that turns an XElement into a content type to write and another used by the reader to create the actual game objects.
I need to build these factories in code because they map strings to delegates. I have a service that contains several of these factories. The mission is to make these factory classes available to a content processor. Neither the processor itself nor the context it uses as a parameter have any known hooks to attach an IServiceProvider or equivalent.
Any ideas?
I needed to create a data structure essentially on demand without access to the underlying classes as they came from a third party, in this case XNA Game Studio. There is only one way to do this I know of... statically.
public class TestMap : Dictionary<string, string>
{
private static readonly TestMap map = new TestMap();
private TestMap()
{
Add("Logic", "LogicProcessor");
Add("Sequence", "SequenceProcessor");
Add("Key", "KeyProcessor");
Add("KeyVector", "KeyVectorProcessor");
Add("Mouse", "MouseProcessor");
Add("Pad", "PadProcessor");
Add("PadVector", "PadVectorProcessor");
}
public static TestMap Map
{
get { return map; }
}
public IEnumerable<TestContent> Collect(XElement xe, ContentProcessorContext cpc)
{
foreach(var e in xe.Elements().Where(e => ContainsKey(e.Name.ToString())))
{
yield return cpc.Convert<XElement, TestContent>(
e, this[e.Name.ToString()]);
}
}
}
I took this a step further and created content processors for each type of TestBase:
/// <summary>
/// Turns an imported XElement into a TestContent used for a LogicTest
/// </summary>
[ContentProcessor(DisplayName = "LogicProcessor")]
public class LogicProcessor : ContentProcessor<XElement, TestContent>
{
public override TestContent Process(XElement input, ContentProcessorContext context)
{
var result = new TestContent(input);
string key = "Or";
input.GetAttribute("op", key);
result.args.Add("key", key);
var items = TestMap.Map.Collect(input, context);
if (items.Count() < 2) throw new ArgumentNullException(
"LogicProcessor requires at least two items.");
result.args.Add("items", items);
return result;
}
}
Any attempt to reference or access the class such as calling TestMap.Collect will generate the underlying static class if needed. I basically moved the code from LogicTest.Build to the processor. I also carry out any needed validation in the processor.
When I get to reading these classes I will have the ContentService to help.
I need to perform some initialization when new instances of my domain class are created.
class ActivationToken {
String foo
String bar
}
When I do this I want bar to be initialized by code inside ActivationToken:
def tok = new ActivationToken(foo:'a')
I cannot see how to 'override' the 'constructor' to make this happen. I know in this case I could just add a normal constructor but this is just a simple example.
The map constructor is coming from Groovy - not Grails in this case. I did some experimentation, and this is what I came up with:
class Foo {
String name = "bob"
int num = 0
public Foo() {
this([:])
}
public Foo(Map map) {
map?.each { k, v -> this[k] = v }
name = name.toUpperCase()
}
public String toString() {
"$name=$num"
}
}
assert 'BOB=0' == new Foo().toString()
assert 'JOE=32' == new Foo(name:"joe", num: 32).toString()
Basically, it appears that you'll have to manually override the constructors if you need to process the property after construction.
Alternately, you can override individual setters, which is cleaner and safer in general:
class Foo {
String name = "bob"
int num = 0
public void setName(n) {
name = n.toUpperCase()
}
public String toString() {
"$name=$num"
}
}
assert 'bob=0' == new Foo().toString()
assert 'JOE=32' == new Foo(name:"joe", num: 32).toString()
Note that the default value isn't processed, but that should be OK in most instances.
The solution above is also good for cases where initializing an object from parameters in a web request, for example, where you wish to ignore extraneous values, catching Missing property exceptions.
public Foo(Map map) {
try {
map?.each { k, v -> this[k] = v }
}
catch(Exception e){
}
}