Reducing moire when downsampling halftone comic images - image-processing

How can I reduce moire effects when downsampling halftone comic book images during live zoom on an iPhone or iPad?
I am writing a comic book viewer. It would be nice to provide higher resolution images and allow the user to zoom in while reading the comic book. However, my client is averse to moire effects and will not allow this feature if there are noticeable moire artifacts while zooming, which of course there are.
Modifying the images to be less susceptible to moire would only work if the modifications were not perceptible. Blur was specifically prohibited, as is anything that removes the beloved halftone dots.
The images are black and white halftone and line art. The originals are 600 dpi but what we ship with the application will be half that at best, so probably 2500 pixels or less tall.
So what are my options? If I write a custom downsampling algorithm would it be fast enough for real time on these devices? Are there other tricks I can do? Would it work to just avoid the size ratios that have the most visual moire effects?
As you zoom in an out, there are definitely peaks where the moire effects are worst. Is there a way to calculate what those points are and just zoom to a nearby scale that is not as bad?
Any suggestions are welcome. I have very little experience with image and signal processing, but am enjoying the opportunity to learn. I know nothing of wavelets and acutance and other jargon, so please be verbose.
Edit:
For now at least we are punting on dynamic zoom. We will support zooming in to full magnification but not arbitrary scaling. I hope to revisit this in the future.

Moire effects occur due to aliasing. Aliasing occurs due to the sampling frequency being too low compared to the frequency content of the signal/image.
I can't really see any way to avoid this without applying blur. If you choose your blur filter good enough you should be able to get results which do not look "blurred" at all.
Since blur is simple to implement I would implement downsampling with blurring and show it to the customer. If they are happy with the results, then all should be well.
The only other options I see is:
Custom downsampling method. Unless someone else has come up with one, I don't think it's an option, since you yourself claim to have little experience with image/signal processing.
Convert the comics to vector format which would yield infinite zoom.

Difficult problem, in general, interesting in particular. I doubt there is a good-simple solution - perhaps if we could assume a nearly ideal halftoning (monochrome images with halftoning dots placed in a perfect grid), but this would hardly work for a scanned image.
If you are interested in the math and/or want some bibliography to research, this thesis might be useful (i haven't read it)
Also you can search for descreening algorithms, plugins, etc, to get ideas.

Related

Quantifying differences in an image sequence to measure activity

I'm looking for a program that will enable me to quantity the difference between images in an image sequence over time.
We are hoping to use timelapse images to measure the activity of tadpoles by comparing how the images change over time. Tracking the movement of individuals isn’t necessary. The tadpoles are dark and the background of the aquarium is light, however the background isn’t uniform and some of the decor items like dark rocks and foliage make it so that all the tadpoles aren’t visible at all times.
Basically need a program that will allow me to quantity the differences/motion detected in an image sequence (i.e 209 images) and produce data that can be exported...
Any and all suggestions appreciated!!
Your question is rather vague and you don't supply any images or real indication of what you expect as results, so my answer will not be as thorough as it might otherwise be.
You don't mention any tools you are familiar with, but my recommendation would be Python and OpenCV. Alternatives are probably scikit-image, Python Wand.
In general, when trying to detect movement across a series of images, you would:
try and work out what the background is
look for movement by sutracting, or differencing, frames from the background
clean up the difference image
identify objects - maybe by shape or size or colour
maybe track objects
produce statistics
As regards working out the background, I did an example here by finding the median pixel across all images at each location in the images. There is also an OpenCV tutorial here.
As regards cleaning up images, you can probably remove noise in the background subtraction with a small median filter, say 3x3 or 5x5 depending on the resolution of your images.
As regards detecting tadpoles, you will probably want to use OpenCV findContours() and filter by size, or colour, or circularity. There are some fairly decent tutorials on PyImageSearch. There is also an ImageMagick "Connected Component" analysis to find a tennis player that I did here.

IDEAL solution to separate text from background?

Suppose I have gray-scale photographic pictures of texts sheets. Each sheet of paper is exactly white and text is exactly black.
Unfortunately, the light is not uniform, also perspective shading occurs, also sheets of papers may be curved. Of course, there are some small hi freq noise on an image.
I AM SURE that there should be nearly IDEAL solution to separate text and background in this situation.
So what is it? :)
I don't believe it is impossible or even hard to turn such gray-scale images into nearly perfect black and white pictures. I cant prove this but I judge on my own perception: I need no any intelligence to recognize such pictures by an eye. They can be in any language even unfamiliar, but I will SEE what is written exactly.
So, how to teach computer to do the same?
UPDATE
Consider original image
Any global thresolding will cause artefacts (1) and nonuniform text representation (2)
I need some thresolding, which looks for local statistics.
Switch to adaptive thresholding.
Here you will find some introduction - http://homepages.inf.ed.ac.uk/rbf/HIPR2/adpthrsh.htm
Adaptive thresholding is designed to deal with exactly this kind of problems.

Feature Detection in Noisy Images

I've built an imaging system with a webcam and feature matching such that as I move the camera around; I can track the camera's motion. I am doing something similar to here, except with the webcam frames as the input.
It works really well for "good" images, but when taking images in really low light lots of noise appears (camera high gain), and that messes with the feature detection and matching. Basically, it doesn't detect any good features, and when it does, it cannot match them correctly between frames.
Does anyone know a good solution for this? What other methods are used for finding and matching features?
Here are two example images with very low features:
I think phase correlation is going to be your best bet here. It is designed to tell you the phase shift (i.e., translation) between two images. It is much more resilient (but not immune) to noise than feature detection because it operates in frequency space; whereas, feature detectors operate spatially. Another benefit is, it is very fast when compared with feature detection methods. I have an implementation available in the OpenCV trunk that is sub-pixel accurate located here.
However, your images are pretty much "featureless" with the exception of the crease in the middle, so even phase correlation may have some trouble with it. Think of it like trying to detect translation in a snow storm. If all you can see is white, you can't tell that you have translated at all, thus the term whiteout. In your case, the algorithm might suffer from "greenout" :)
Can you adjust the camera settings to work better in low-light conditions. Have you fully opened the iris? Can you live with lower framerates? Setting a longer exposure time will allow the camera to gather more light, thus giving you more features at the cost of adding motion blur. Or, if low-light is your default environment you probably want something designed for this like an IR camera, but those can be expensive. Other than that, a big lens and long exposures are your friend :)
Histogram equalization may be of interest in improving the image contrast. But, sometimes it can just enhance the noise. OpenCV has a global histogram equalization function called equalizeHist. For a more localized implementation, you'll want to look at Contrast Limited Adaptive Histogram Equalization or CLAHE for short. Here is a good article on it. This page has some nice examples, and some code.

Fast, reliable focus score for camera frames

I'm doing real-time frame-by-frame analysis of a video stream in iOS.
I need to assign a score to each frame for how in focus it is. The method must be very fast to calculate on a mobile device and should be fairly reliable.
I've tried simple things like summing after using an edge detector, but haven't been impressed by the results. I've also tried using the focus scores provided in the frame's metadata dictionary, but they're significantly affected by the brightness of the image, and much more device-specific.
What are good ways to calculate a fast, reliable focus score?
Poor focus means that edges are not very sharp, and small details are lost. High JPEG compression gives very similar distortions.
Compress a copy of your image heavily, unpack and calculate the difference with the original. Intense difference, even at few spots, should mean that the source image had sharp details that are lost in compression. If difference is relatively small everywhere, the source was already fuzzy.
The method can be easily tried in an image editor. (No, I did not yet try it.) Hopefully iPhone has an optimized JPEG compressor already.
A simple answer that human visual system probably uses is to implemnt focusing on top of edge
Tracking. Thus if a set of edges can be tracked across a visual sequence one can work with intensity profile
Of these edges only to detrmine when it the steepest.
From a theoretical point of view, blur manifests as a lost of the high frequency content. Thus, you can just use do a FFT and check the relative frequency distribution. iPhone uses ARM Cortex chips which have NEON instructions that can be used for an efficient FFT implementation.
#9000's suggestion of heavily compressed JPEG has the effect of taking a very small number of the largest wavelet coefficients will usually result in what's in essence a low pass filter.
Consider different kind of edges: e.g. peaks versus step edges. The latter will still be present regardless of focus. To isolate the former use non max suppression in the direction of gradient. As a focus score use the ratio of suppressed edges at two different resolutions.

An algorithm for a drawing and painting robot - any tips?

Algorithm for a drawing and painting robot -
Hello
I want to write a piece of software which analyses an image, and then produces an image which captures what a human eye perceives in the original image, using a minimum of bezier path objects of varying of colour and opacity.
Unlike the recent twitter super compression contest (see: stackoverflow.com/questions/891643/twitter-image-encoding-challenge), my goal is not to create a replica which is faithful to the image, but instead to replicate the human experience of looking at the image.
As an example, if the original image shows a red balloon in the top left corner, and the reproduction has something that looks like a red balloon in the top left corner then I will have achieved my goal, even if the balloon in the reproduction is not quite in the same position and not quite the same size or colour.
When I say "as perceived by a human", I mean this in a very limited sense. i am not attempting to analyse the meaning of an image, I don't need to know what an image is of, i am only interested in the key visual features a human eye would notice, to the extent that this can be automated by an algorithm which has no capacity to conceptualise what it is actually observing.
Why this unusual criteria of human perception over photographic accuracy?
This software would be used to drive a drawing and painting robot, which will be collaborating with a human artist (see: video.google.com/videosearch?q=mr%20squiggle).
Rather than treating marks made by the human which are not photographically perfect as necessarily being mistakes, The algorithm should seek to incorporate what is already on the canvas into the final image.
So relative brightness, hue, saturation, size and position are much more important than being photographically identical to the original. The maintaining the topology of the features, block of colour, gradients, convex and concave curve will be more important the exact size shape and colour of those features
Still with me?
My problem is that I suffering a little from the "when you have a hammer everything looks like a nail" syndrome. To me it seems the way to do this is using a genetic algorithm with something like the comparison of wavelet transforms (see: grail.cs.washington.edu/projects/query/) used by retrievr (see: labs.systemone.at/retrievr/) to select fit solutions.
But the main reason I see this as the answer, is that these are these are the techniques I know, there are probably much more elegant solutions using techniques I don't now anything about.
It would be especially interesting to take into account the ways the human vision system analyses an image, so perhaps special attention needs to be paid to straight lines, and angles, high contrast borders and large blocks of similar colours.
Do you have any suggestions for things I should read on vision, image algorithms, genetic algorithms or similar projects?
Thank you
Mat
PS. Some of the spelling above may appear wrong to you and your spellcheck. It's just international spelling variations which may differ from the standard in your country: e.g. Australian standard: colour vs American standard: color
There is an model that can implemented as an algorithm to calculate a saliency map for an image, determining which parts of the image would get the most attention from a human.
The model is called itti koch model
You can find a startin paper here
And more resources and c++ sourcecode here
I cannot answer your question directly, but you should really take a look at artist/programmer (Lisp) Harold Cohen's painting machine Aaron.
That's quite a big task. You might be interested in image vectorizing (don't know what it's called officially), which is used to take in rasterized images (such as pictures you take with a camera) and outputs a set of bezier lines (i think) that approximate the image you put in. Since good algorithms often output very high quality (read: complex) line sets you'd also be interested in simplification algorithms which can help enormously.
Unfortunately I am not next to my library, or I could reccomend a number of books on perceptual psychology.
The first thing you must consider is the physiology of the human eye is such that when we examine an image or scene, we are only capturing very small bits at a time, as our eyes dart around rapidly. Our mind peices the different parts together to try and form a whole.
You might start by finding an algorithm for the path of an eyeball as it darts around. Perhaps it is attracted to contrast?
Next is that our eyes adjust the "exposure" depending on the context. It's like those high dynamic range images, if they were peiced together not by multiple exposures of a whole scene, but by many small images, each balanced on its own, but blended into its surroundings to form a high dynamic range.
Now there was a finding in a monkey brain that there is a single neuron that lights up if there's a diagonal line in the upper left of its field of vision. Similar neurons can be found for vertical lines, and horizontal lines in various areas of that monkey's field of vision. The "diagonalness" determines the frequency with which that neuron fires.
one might speculated that other neurons might be found and mapped to other qualities such as redness, or texturedness, and other things.
There's something humans can do that I've not seen a computer program ever able to do. it's something called "closure", where a human is able to fill in information about something that they are seeing, that doesn't actually exist in the image. an example:
*
* *
is that a triangle? If you knew that it was in advance, then you could probably make a program to connect the dots. But what if it's just dots? How can you know? I wouldn't attempt this one unless I had some really clever way of dealing with that one.
There are many other facts about human perception you might be able to use. Good luck, you've not picked a straightforward task.
i think a thing that could help you in this enormous task is human involvement. i mean data. like you could have many people sitting staring at random dots (like from the previous post) and connect them as they see right. you could harness that data.

Resources