Which machine learning classifier to choose, in general? [closed] - machine-learning

Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed 4 years ago.
Improve this question
Suppose I'm working on some classification problem. (Fraud detection and comment spam are two problems I'm working on right now, but I'm curious about any classification task in general.)
How do I know which classifier I should use?
Decision tree
SVM
Bayesian
Neural network
K-nearest neighbors
Q-learning
Genetic algorithm
Markov decision processes
Convolutional neural networks
Linear regression or logistic regression
Boosting, bagging, ensambling
Random hill climbing or simulated annealing
...
In which cases is one of these the "natural" first choice, and what are the principles for choosing that one?
Examples of the type of answers I'm looking for (from Manning et al.'s Introduction to Information Retrieval book):
a. If your data is labeled, but you only have a limited amount, you should use a classifier with high bias (for example, Naive Bayes).
I'm guessing this is because a higher-bias classifier will have lower variance, which is good because of the small amount of data.
b. If you have a ton of data, then the classifier doesn't really matter so much, so you should probably just choose a classifier with good scalability.
What are other guidelines? Even answers like "if you'll have to explain your model to some upper management person, then maybe you should use a decision tree, since the decision rules are fairly transparent" are good. I care less about implementation/library issues, though.
Also, for a somewhat separate question, besides standard Bayesian classifiers, are there 'standard state-of-the-art' methods for comment spam detection (as opposed to email spam)?

First of all, you need to identify your problem. It depends upon what kind of data you have and what your desired task is.
If you are Predicting Category :
You have Labeled Data
You need to follow Classification Approach and its algorithms
You don't have Labeled Data
You need to go for Clustering Approach
If you are Predicting Quantity :
You need to go for Regression Approach
Otherwise
You can go for Dimensionality Reduction Approach
There are different algorithms within each approach mentioned above. The choice of a particular algorithm depends upon the size of the dataset.
Source: http://scikit-learn.org/stable/tutorial/machine_learning_map/

Model selection using cross validation may be what you need.
Cross validation
What you do is simply to split your dataset into k non-overlapping subsets (folds), train a model using k-1 folds and predict its performance using the fold you left out. This you do for each possible combination of folds (first leave 1st fold out, then 2nd, ... , then kth, and train with the remaining folds). After finishing, you estimate the mean performance of all folds (maybe also the variance/standard deviation of the performance).
How to choose the parameter k depends on the time you have. Usual values for k are 3, 5, 10 or even N, where N is the size of your data (that's the same as leave-one-out cross validation). I prefer 5 or 10.
Model selection
Let's say you have 5 methods (ANN, SVM, KNN, etc) and 10 parameter combinations for each method (depending on the method). You simply have to run cross validation for each method and parameter combination (5 * 10 = 50) and select the best model, method and parameters. Then you re-train with the best method and parameters on all your data and you have your final model.
There are some more things to say. If, for example, you use a lot of methods and parameter combinations for each, it's very likely you will overfit. In cases like these, you have to use nested cross validation.
Nested cross validation
In nested cross validation, you perform cross validation on the model selection algorithm.
Again, you first split your data into k folds. After each step, you choose k-1 as your training data and the remaining one as your test data. Then you run model selection (the procedure I explained above) for each possible combination of those k folds. After finishing this, you will have k models, one for each combination of folds. After that, you test each model with the remaining test data and choose the best one. Again, after having the last model you train a new one with the same method and parameters on all the data you have. That's your final model.
Of course, there are many variations of these methods and other things I didn't mention. If you need more information about these look for some publications about these topics.

The book "OpenCV" has a great two pages on this on pages 462-463. Searching the Amazon preview for the word "discriminative" (probably google books also) will let you see the pages in question. These two pages are the greatest gem I have found in this book.
In short:
Boosting - often effective when a large amount of training data is available.
Random trees - often very effective and can also perform regression.
K-nearest neighbors - simplest thing you can do, often effective but slow and requires lots of memory.
Neural networks - Slow to train but very fast to run, still optimal performer for letter recognition.
SVM - Among the best with limited data, but losing against boosting or random trees only when large data sets are available.

Things you might consider in choosing which algorithm to use would include:
Do you need to train incrementally (as opposed to batched)?
If you need to update your classifier with new data frequently (or you have tons of data), you'll probably want to use Bayesian. Neural nets and SVM need to work on the training data in one go.
Is your data composed of categorical only, or numeric only, or both?
I think Bayesian works best with categorical/binomial data. Decision trees can't predict numerical values.
Does you or your audience need to understand how the classifier works?
Use Bayesian or decision trees, since these can be easily explained to most people. Neural networks and SVM are "black boxes" in the sense that you can't really see how they are classifying data.
How much classification speed do you need?
SVM's are fast when it comes to classifying since they only need to determine which side of the "line" your data is on. Decision trees can be slow especially when they're complex (e.g. lots of branches).
Complexity.
Neural nets and SVMs can handle complex non-linear classification.

As Prof Andrew Ng often states: always begin by implementing a rough, dirty algorithm, and then iteratively refine it.
For classification, Naive Bayes is a good starter, as it has good performances, is highly scalable and can adapt to almost any kind of classification task. Also 1NN (K-Nearest Neighbours with only 1 neighbour) is a no-hassle best fit algorithm (because the data will be the model, and thus you don't have to care about the dimensionality fit of your decision boundary), the only issue is the computation cost (quadratic because you need to compute the distance matrix, so it may not be a good fit for high dimensional data).
Another good starter algorithm is the Random Forests (composed of decision trees), this is highly scalable to any number of dimensions and has generally quite acceptable performances. Then finally, there are genetic algorithms, which scale admirably well to any dimension and any data with minimal knowledge of the data itself, with the most minimal and simplest implementation being the microbial genetic algorithm (only one line of C code! by Inman Harvey in 1996), and one of the most complex being CMA-ES and MOGA/e-MOEA.
And remember that, often, you can't really know what will work best on your data before you try the algorithms for real.
As a side-note, if you want a theoretical framework to test your hypothesis and algorithms theoretical performances for a given problem, you can use the PAC (Probably approximately correct) learning framework (beware: it's very abstract and complex!), but to summary, the gist of PAC learning says that you should use the less complex, but complex enough (complexity being the maximum dimensionality that the algo can fit) algorithm that can fit your data. In other words, use the Occam's razor.

Sam Roweis used to say that you should try naive Bayes, logistic regression, k-nearest neighbour and Fisher's linear discriminant before anything else.

My take on it is that you always run the basic classifiers first to get some sense of your data. More often than not (in my experience at least) they've been good enough.
So, if you have supervised data, train a Naive Bayes classifier. If you have unsupervised data, you can try k-means clustering.
Another resource is one of the lecture videos of the series of videos Stanford Machine Learning, which I watched a while back. In video 4 or 5, I think, the lecturer discusses some generally accepted conventions when training classifiers, advantages/tradeoffs, etc.

You should always keep into account the inference vs prediction trade-off.
If you want to understand the complex relationship that is occurring in your data then you should go with a rich inference algorithm (e.g. linear regression or lasso). On the other hand, if you are only interested in the result you can go with high dimensional and more complex (but less interpretable) algorithms, like neural networks.

Selection of Algorithm is depending upon the scenario and the type and size of data set.
There are many other factors.
This is a brief cheat sheet for basic machine learning.

Related

Naive Bayes vs. SVM for classifying text data

I'm working on a problem that involves classifying a large database of texts. The texts are very short (think 3-8 words each) and there are 10-12 categories into which I wish to sort them. For the features, I'm simply using the tf–idf frequency of each word. Thus, the number of features is roughly equal to the number of words that appear overall in the texts (I'm removing stop words and some others).
In trying to come up with a model to use, I've had the following two ideas:
Naive Bayes (likely the sklearn multinomial Naive Bayes implementation)
Support vector machine (with stochastic gradient descent used in training, also an sklearn implementation)
I have built both models, and am currently comparing the results.
What are the theoretical pros and cons to each model? Why might one of these be better for this type of problem? I'm new to machine learning, so what I'd like to understand is why one might do better.
Many thanks!
The biggest difference between the models you're building from a "features" point of view is that Naive Bayes treats them as independent, whereas SVM looks at the interactions between them to a certain degree, as long as you're using a non-linear kernel (Gaussian, rbf, poly etc.). So if you have interactions, and, given your problem, you most likely do, an SVM will be better at capturing those, hence better at the classification task you want.
The consensus for ML researchers and practitioners is that in almost all cases, the SVM is better than the Naive Bayes.
From a theoretical point of view, it is a little bit hard to compare the two methods. One is probabilistic in nature, while the second one is geometric. However, it's quite easy to come up with a function where one has dependencies between variables which are not captured by Naive Bayes (y(a,b) = ab), so we know it isn't an universal approximator. SVMs with the proper choice of Kernel are (as are 2/3 layer neural networks) though, so from that point of view, the theory matches the practice.
But in the end it comes down to performance on your problem - you basically want to choose the simplest method which will give good enough results for your problem and have a good enough performance. Spam detection has been famously solvable by just Naive Bayes, for example. Face recognition in images by a similar method enhanced with boosting etc.
Support Vector Machine (SVM) is better at full-length content.
Multinomial Naive Bayes (MNB) is better at snippets.
MNB is stronger for snippets than for longer documents. While (Ng and Jordan,
2002) showed that NB is better than SVM/logistic
regression (LR) with few training cases, MNB is also better with short documents. SVM usually beats NB when it has more than 30–50 training cases, we show that MNB is still better on snippets even with relatively large training sets (9k cases).
Inshort, NBSVM seems to be an appropriate and very strong baseline for sophisticated classification text data.
Source Code: https://github.com/prakhar-agarwal/Naive-Bayes-SVM
Reference: http://nlp.stanford.edu/pubs/sidaw12_simple_sentiment.pdf
Cite: Wang, Sida, and Christopher D. Manning. "Baselines and bigrams:
Simple, good sentiment and topic classification." Proceedings of the
50th Annual Meeting of the Association for Computational Linguistics:
Short Papers-Volume 2. Association for Computational Linguistics,
2012.

Predictive features with high presence in one class

I am doing a logistic regression to predict the outcome of a binary variable, say whether a journal paper gets accepted or not. The dependent variable or predictors are all the phrases used in these papers - (unigrams, bigrams, trigrams). One of these phrases has a skewed presence in the 'accepted' class. Including this phrase gives me a classifier with a very high accuracy (more than 90%), while removing this phrase results in accuracy dropping to about 70%.
My more general (naive) machine learning question is:
Is it advisable to remove such skewed features when doing classification?
Is there a method to check skewed presence for every feature and then decide whether to keep it in the model or not?
If I understand correctly you ask whether some feature should be removed because it is a good predictor (it makes your classifier works better). So the answer is short and simple - do not remove it in fact, the whole concept is to find exactly such features.
The only reason to remove such feature would be that this phenomena only occurs in the training set, and not in real data. But in such case you have wrong data - which does not represnt the underlying data density and you should gather better data or "clean" the current one so it has analogous characteristics as the "real ones".
Based on your comments, it sounds like the feature in your documents that's highly predictive of the class is a near-tautology: "paper accepted on" correlates with accepted papers because at least some of the papers in your database were scraped from already-accepted papers and have been annotated by the authors as such.
To me, this sounds like a useless feature for trying to predict whether a paper will be accepted, because (I'd imagine) you're trying to predict paper acceptance before the actual acceptance has been issued ! In such a case, none of the papers you'd like to test your algorithm with will be annotated with "paper accepted on." So, I'd remove it.
You also asked about how to determine whether a feature correlates strongly with one class. There are three things that come to mind for this problem.
First, you could just compute a basic frequency count for each feature in your dataset and compare those values across classes. This is probably not super informative, but it's easy.
Second, since you're using a log-linear model, you can train your model on your training dataset, and then rank each feature in your model by its weight in the logistic regression parameter vector. Features with high positive weight are indicative of one class, while features with large negative weight are strongly indicative of the other.
Finally, just for the sake of completeness, I'll point out that you might also want to look into feature selection. There are many ways of selecting relevant features for a machine learning algorithm, but I think one of the most intuitive from your perspective might be greedy feature elimination. In such an approach, you train a classifier using all N features in your model, and measure the accuracy on some held-out validation set. Then, train N new models, each with N-1 features, such that each model eliminates one of the N features, and measure the resulting drop in accuracy. The feature with the biggest drop was probably strongly predictive of the class, while features that have no measurable difference can probably be omitted from your final model. As larsmans points out correctly in the comments below, this doesn't scale well at all, but it can be a useful method sometimes.

Machine Learning Algorithm selection

I am new in machine learning. My problem is to make a machine to select a university for the student according to his location and area of interest. i.e it should select the university in the same city as in the address of the student. I am confused in selection of the algorithm can I use Perceptron algorithm for this task.
There are no hard rules as to which machine learning algorithm is the best for which task. Your best bet is to try several and see which one achieves the best results. You can use the Weka toolkit, which implements a lot of different machine learning algorithms. And yes, you can use the perceptron algorithm for your problem -- but that is not to say that you would achieve good results with it.
From your description it sounds like the problem you're trying to solve doesn't really require machine learning. If all you want to do is match a student with the closest university that offers a course in the student's area of interest, you can do this without any learning.
I second the first remark that you probably don't need machine learning if the student has to live in the same area as the university. If you want to use an ML algorithm, maybe it would best to think about what data you would have to start with. The thing that comes to mind is a vector for a university that has certain subjects/areas for each feature. Then compute a distance from a vector which is like an ideal feature vector for the student. Minimize this distance.
The first and formost thing you need is a labeled dataset.
It sounds like the problem could be decomposed into a ML problem however you first need a set of positive and negative examples to train from.
How big is your dataset? What features do you have available? Once you answer these questions you can select an algorithm that bests fits the features of your data.
I would suggest using decision trees for this problem which resembles a set of if else rules. You can just take the location and area of interest of the student as conditions of if and else if statements and then suggest a university for him. Since its a direct mapping of inputs to outputs, rule based solution would work and there is no learning required here.
Maybe you can use a "recommender system"or a clustering approach , you can investigate more deeply the techniques like "collaborative filtering"(recommender system) or k-means(clustering) but again, as some people said, first you need data to learn from, and maybe your problem can be solved without ML.
Well, there is no straightforward and sure-shot answer to this question. The answer depends on many factors like the problem statement and the kind of output you want, type and size of the data, the available computational time, number of features, and observations in the data, to name a few.
Size of the training data
Accuracy and/or Interpretability of the output
Accuracy of a model means that the function predicts a response value for a given observation, which is close to the true response value for that observation. A highly interpretable algorithm (restrictive models like Linear Regression) means that one can easily understand how any individual predictor is associated with the response while the flexible models give higher accuracy at the cost of low interpretability.
Speed or Training time
Higher accuracy typically means higher training time. Also, algorithms require more time to train on large training data. In real-world applications, the choice of algorithm is driven by these two factors predominantly.
Algorithms like Naïve Bayes and Linear and Logistic regression are easy to implement and quick to run. Algorithms like SVM, which involve tuning of parameters, Neural networks with high convergence time, and random forests, need a lot of time to train the data.
Linearity
Many algorithms work on the assumption that classes can be separated by a straight line (or its higher-dimensional analog). Examples include logistic regression and support vector machines. Linear regression algorithms assume that data trends follow a straight line. If the data is linear, then these algorithms perform quite good.
Number of features
The dataset may have a large number of features that may not all be relevant and significant. For a certain type of data, such as genetics or textual, the number of features can be very large compared to the number of data points.

Ways to improve the accuracy of a Naive Bayes Classifier?

I am using a Naive Bayes Classifier to categorize several thousand documents into 30 different categories. I have implemented a Naive Bayes Classifier, and with some feature selection (mostly filtering useless words), I've gotten about a 30% test accuracy, with 45% training accuracy. This is significantly better than random, but I want it to be better.
I've tried implementing AdaBoost with NB, but it does not appear to give appreciably better results (the literature seems split on this, some papers say AdaBoost with NB doesn't give better results, others do). Do you know of any other extensions to NB that may possibly give better accuracy?
In my experience, properly trained Naive Bayes classifiers are usually astonishingly accurate (and very fast to train--noticeably faster than any classifier-builder i have everused).
so when you want to improve classifier prediction, you can look in several places:
tune your classifier (adjusting the classifier's tunable paramaters);
apply some sort of classifier combination technique (eg,
ensembling, boosting, bagging); or you can
look at the data fed to the classifier--either add more data,
improve your basic parsing, or refine the features you select from
the data.
w/r/t naive Bayesian classifiers, parameter tuning is limited; i recommend to focus on your data--ie, the quality of your pre-processing and the feature selection.
I. Data Parsing (pre-processing)
i assume your raw data is something like a string of raw text for each data point, which by a series of processing steps you transform each string into a structured vector (1D array) for each data point such that each offset corresponds to one feature (usually a word) and the value in that offset corresponds to frequency.
stemming: either manually or by using a stemming library? the popular open-source ones are Porter, Lancaster, and Snowball. So for
instance, if you have the terms programmer, program, progamming,
programmed in a given data point, a stemmer will reduce them to a
single stem (probably program) so your term vector for that data
point will have a value of 4 for the feature program, which is
probably what you want.
synonym finding: same idea as stemming--fold related words into a single word; so a synonym finder can identify developer, programmer,
coder, and software engineer and roll them into a single term
neutral words: words with similar frequencies across classes make poor features
II. Feature Selection
consider a prototypical use case for NBCs: filtering spam; you can quickly see how it fails and just as quickly you can see how to improve it. For instance, above-average spam filters have nuanced features like: frequency of words in all caps, frequency of words in title, and the occurrence of exclamation point in the title. In addition, the best features are often not single words but e.g., pairs of words, or larger word groups.
III. Specific Classifier Optimizations
Instead of 30 classes use a 'one-against-many' scheme--in other words, you begin with a two-class classifier (Class A and 'all else') then the results in the 'all else' class are returned to the algorithm for classification into Class B and 'all else', etc.
The Fisher Method (probably the most common way to optimize a Naive Bayes classifier.) To me,
i think of Fisher as normalizing (more correctly, standardizing) the input probabilities An NBC uses the feature probabilities to construct a 'whole-document' probability. The Fisher Method calculates the probability of a category for each feature of the document then combines these feature probabilities and compares that combined probability with the probability of a random set of features.
I would suggest using a SGDClassifier as in this and tune it in terms of regularization strength.
Also try to tune the formula in TFIDF you're using by tuning the parameters of TFIFVectorizer.
I usually see that for text classification problems SVM or Logistic Regressioin when trained one-versus-all outperforms NB. As you can see in this nice article by Stanford people for longer documents SVM outperforms NB. The code for the paper which uses a combination of SVM and NB (NBSVM) is here.
Second, tune your TFIDF formula (e.g. sublinear tf, smooth_idf).
Normalize your samples with l2 or l1 normalization (default in Tfidfvectorization) because it compensates for different document lengths.
Multilayer Perceptron, usually gets better results than NB or SVM because of the non-linearity introduced which is inherent to many text classification problems. I have implemented a highly parallel one using Theano/Lasagne which is easy to use and downloadable here.
Try to tune your l1/l2/elasticnet regularization. It makes a huge difference in SGDClassifier/SVM/Logistic Regression.
Try to use n-grams which is configurable in tfidfvectorizer.
If your documents have structure (e.g. have titles) consider using different features for different parts. For example add title_word1 to your document if word1 happens in the title of the document.
Consider using the length of the document as a feature (e.g. number of words or characters).
Consider using meta information about the document (e.g. time of creation, author name, url of the document, etc.).
Recently Facebook published their FastText classification code which performs very well across many tasks, be sure to try it.
Using Laplacian Correction along with AdaBoost.
In AdaBoost, first a weight is assigned to each data tuple in the training dataset. The intial weights are set using the init_weights method, which initializes each weight to be 1/d, where d is the size of the training data set.
Then, a generate_classifiers method is called, which runs k times, creating k instances of the Naïve Bayes classifier. These classifiers are then weighted, and the test data is run on each classifier. The sum of the weighted "votes" of the classifiers constitutes the final classification.
Improves Naive Bayes classifier for general cases
Take the logarithm of your probabilities as input features
We change the probability space to log probability space since we calculate the probability by multiplying probabilities and the result will be very small. when we change to log probability features, we can tackle the under-runs problem.
Remove correlated features.
Naive Byes works based on the assumption of independence when we have a correlation between features which means one feature depends on others then our assumption will fail.
More about correlation can be found here
Work with enough data not the huge data
naive Bayes require less data than logistic regression since it only needs data to understand the probabilistic relationship of each attribute in isolation with the output variable, not the interactions.
Check zero frequency error
If the test data set has zero frequency issue, apply smoothing techniques “Laplace Correction” to predict the class of test data set.
More than this is well described in the following posts
Please refer below posts.
machinelearningmastery site post
Analyticvidhya site post
keeping the n size small also make NB to give high accuracy result. and at the core, as the n size increase its accuracy degrade,
Select features which have less correlation between them. And try using different combination of features at a time.

How to approach machine learning problems with high dimensional input space?

How should I approach a situtation when I try to apply some ML algorithm (classification, to be more specific, SVM in particular) over some high dimensional input, and the results I get are not quite satisfactory?
1, 2 or 3 dimensional data can be visualized, along with the algorithm's results, so you can get the hang of what's going on, and have some idea how to aproach the problem. Once the data is over 3 dimensions, other than intuitively playing around with the parameters I am not really sure how to attack it?
What do you do to the data? My answer: nothing. SVMs are designed to handle high-dimensional data. I'm working on a research problem right now that involves supervised classification using SVMs. Along with finding sources on the Internet, I did my own experiments on the impact of dimensionality reduction prior to classification. Preprocessing the features using PCA/LDA did not significantly increase classification accuracy of the SVM.
To me, this totally makes sense from the way SVMs work. Let x be an m-dimensional feature vector. Let y = Ax where y is in R^n and x is in R^m for n < m, i.e., y is x projected onto a space of lower dimension. If the classes Y1 and Y2 are linearly separable in R^n, then the corresponding classes X1 and X2 are linearly separable in R^m. Therefore, the original subspaces should be "at least" as separable as their projections onto lower dimensions, i.e., PCA should not help, in theory.
Here is one discussion that debates the use of PCA before SVM: link
What you can do is change your SVM parameters. For example, with libsvm link, the parameters C and gamma are crucially important to classification success. The libsvm faq, particularly this entry link, contains more helpful tips. Among them:
Scale your features before classification.
Try to obtain balanced classes. If impossible, then penalize one class more than the other. See more references on SVM imbalance.
Check the SVM parameters. Try many combinations to arrive at the best one.
Use the RBF kernel first. It almost always works best (computationally speaking).
Almost forgot... before testing, cross validate!
EDIT: Let me just add this "data point." I recently did another large-scale experiment using the SVM with PCA preprocessing on four exclusive data sets. PCA did not improve the classification results for any choice of reduced dimensionality. The original data with simple diagonal scaling (for each feature, subtract mean and divide by standard deviation) performed better. I'm not making any broad conclusion -- just sharing this one experiment. Maybe on different data, PCA can help.
Some suggestions:
Project data (just for visualization) to a lower-dimensional space (using PCA or MDS or whatever makes sense for your data)
Try to understand why learning fails. Do you think it overfits? Do you think you have enough data? Is it possible there isn't enough information in your features to solve the task you are trying to solve? There are ways to answer each of these questions without visualizing the data.
Also, if you tell us what the task is and what your SVM output is, there may be more specific suggestions people could make.
You can try reducing the dimensionality of the problem by PCA or the similar technique. Beware that PCA has two important points. (1) It assumes that the data it is applied to is normally distributed and (2) the resulting data looses its natural meaning (resulting in a blackbox). If you can live with that, try it.
Another option is to try several parameter selection algorithms. Since SVM's were already mentioned here, you might try the approach of Chang and Li (Feature Ranking Using Linear SVM) in which they used linear SVM to pre-select "interesting features" and then used RBF - based SVM on the selected features. If you are familiar with Orange, a python data mining library, you will be able to code this method in less than an hour. Note that this is a greedy approach which, due to its "greediness" might fail in cases where the input variables are highly correlated. In that case, and if you cannot solve this problem with PCA (see above), you might want to go to heuristic methods, which try to select best possible combinations of predictors. The main pitfall of this kind of approaches is the high potential of overfitting. Make sure you have a bunch "virgin" data that was not seen during the entire process of model building. Test your model on that data only once, after you are sure that the model is ready. If you fail, don't use this data once more to validate another model, you will have to find a new data set. Otherwise you won't be sure that you didn't overfit once more.
List of selected papers on parameter selection:
Feature selection for high-dimensional genomic microarray data
Oh, and one more thing about SVM. SVM is a black box. You better figure out what is the mechanism that generate the data and model the mechanism and not the data. On the other hand, if this would be possible, most probably you wouldn't be here asking this question (and I wouldn't be so bitter about overfitting).
List of selected papers on parameter selection
Feature selection for high-dimensional genomic microarray data
Wrappers for feature subset selection
Parameter selection in particle swarm optimization
I worked in the laboratory that developed this Stochastic method to determine, in silico, the drug like character of molecules
I would approach the problem as follows:
What do you mean by "the results I get are not quite satisfactory"?
If the classification rate on the training data is unsatisfactory, it implies that either
You have outliers in your training data (data that is misclassified). In this case you can try algorithms such as RANSAC to deal with it.
Your model(SVM in this case) is not well suited for this problem. This can be diagnozed by trying other models (adaboost etc.) or adding more parameters to your current model.
The representation of the data is not well suited for your classification task. In this case preprocessing the data with feature selection or dimensionality reduction techniques would help
If the classification rate on the test data is unsatisfactory, it implies that your model overfits the data:
Either your model is too complex(too many parameters) and it needs to be constrained further,
Or you trained it on a training set which is too small and you need more data
Of course it may be a mixture of the above elements. These are all "blind" methods to attack the problem. In order to gain more insight into the problem you may use visualization methods by projecting the data into lower dimensions or look for models which are suited better to the problem domain as you understand it (for example if you know the data is normally distributed you can use GMMs to model the data ...)
If I'm not wrong, you are trying to see which parameters to the SVM gives you the best result. Your problem is model/curve fitting.
I worked on a similar problem couple of years ago. There are tons of libraries and algos to do the same. I used Newton-Raphson's algorithm and a variation of genetic algorithm to fit the curve.
Generate/guess/get the result you are hoping for, through real world experiment (or if you are doing simple classification, just do it yourself). Compare this with the output of your SVM. The algos I mentioned earlier reiterates this process till the result of your model(SVM in this case) somewhat matches the expected values (note that this process would take some time based your problem/data size.. it took about 2 months for me on a 140 node beowulf cluster).
If you choose to go with Newton-Raphson's, this might be a good place to start.

Resources