I have been working on Support Vector Machine for about 2 months now. I have coded SVM myself and for the optimization problem of SVM, I have used Sequential Minimal Optimization(SMO) by Dr. John Platt.
Right now I am in the phase where I am going to grid search to find optimal C value for my dataset. ( Please find details of my project application and dataset details here SVM Classification - minimum number of input sets for each class)
I have successfully checked my custom implemented SVM`s accuracy for C values ranging from 2^0 to 2^6. But now I am having some issues regarding the convergence of the SMO for C> 128.
Like I have tried to find the alpha values for C=128 and it is taking long time before it actually converges and successfully gives alpha values.
Time taken for the SMO to converge is about 5 hours for C=100. This huge I think ( because SMO is supposed to be fast. ) though I`m getting good accuracy?
I am screwed right not because I can not test the accuracy for higher values of C.
I am actually displaying number of alphas changed in every pass of SMO and getting 10, 13, 8... alphas changing continuously. The KKT conditions assures convergence so what is so weird happening here?
Please note that my implementation is working fine for C<=100 with good accuracy though the execution time is long.
Please give me inputs on this issue.
Thank You and Cheers.
For most SVM implementations, training time can increase dramatically with larger values of C. To get a sense of how training time in a reasonably good implementation of SMO scales with C, take a look at the log-scale line for libSVM in the graph below.
SVM training time vs. C - From Sentelle et al.'s A Fast Revised Simplex Method for SVM Training.
alt text http://dmcer.net/StackOverflowImages/svm_scaling.png
You probably have two easy ways and one not so easy way to make things faster.
Let's start with the easy stuff. First, you could try loosening your convergence criteria. A strict criteria like epsilon = 0.001 will take much longer to train, while typically resulting in a model that is no better than a looser criteria like epsilon = 0.01. Second, you should try to profile your code to see if there are any obvious bottlenecks.
The not so easy fix, would be to switch to a different optimization algorithm (e.g., SVM-RSQP from Sentelle et al.'s paper above). But, if you have a working implementation of SMO, you should probably only really do that as a last resort.
If you want complete convergence, especially if C is large, it takes a very long time.You can consider defining a large stop criterion, and give the maximum number of iterations, the default in Libsvm is 1000000, if the number of iterations is more, the time will multiply, but the loss is not worth the cost, but the result may not fully meet the KKT condition, some support vectors are in the band, non-support vectors are out of the band, but the error is small and acceptable.In my opinion, it is recommended to use other quadratic programming algorithms instead of SMO algorithm if the accuracy is higher
Related
Based on data that our business department supplied to us, I used the sklearn decision tree algorithm to determine the ROC_AUC for a binary classification problem.
The data consists of 450 rows and there are 30 features in the data.
I used 10 times StratifiedKFold repetition/split of training and test data. As a result, I got the following ROC_AUC values:
0.624
0.594
0.522
0.623
0.585
0.656
0.629
0.719
0.589
0.589
0.592
As I am new in machine learning, I am unsure whether such a variation in the ROC_AUC values can be expected (with minimum values of 0.522 and maximum values of 0.719).
My questions are:
Is such a big variation to be expected?
Could it be reduced with more data (=rows)?
Will the ROC_AUC variance get smaller, if the ROC_AUC gets better ("closer to 1")?
Well, you do k-fold splits to actually evaluate how well your model generalizes.
Therefore, from your current results I would assume the following:
This is a difficult problem, the AUCs are usually low.
0.71 is an outlier, you were just lucky there (probably).
Important questions that will help us help you:
What is the proportion of the binary classes? Are they balanced?
What are the features? Are they all continuous? If categorical, are they ordinal or nominal?
Why Decision Tree? Have you tried other methods? Logistic Regression for instance is a good start before you move on to more advanced ML methods.
You should run more iterations, instead of k fold use the ShuffleSplit function and run at least 100 iterations, compute the Average AUC with 95% Confidence Intervals. That will give you a better idea of how well the models perform.
Hope this helps!
Is such a big variation to be expected?
This is a textbook case of high variance.
Depending on the difficulty of your problem, 405 training samples may not be enough for it to generalize properly, and the random forest may be too powerful.
Try adding some regularization, by limiting the number of splits that the trees are allowed to make. This should reduce the variance in your model, though you might expect a potentially lower average performance.
Could it be reduced with more data (=rows)?
Yes, adding data is the other popular way of lowering the variance of your model. If you're familiar with deep learning, you'll know that deep models usually need LOTS of samples to learn properly. That's because they are very powerful models with an intrinsically high variance, and therefore a lot of data is needed for them to generalize.
Will the ROC_AUC variance get smaller, if the ROC_AUC gets better ("closer to 1")?
Variance will decrease with regularization and adding data, it has no relation to the actual performance "number" that you get.
Cheers
I am designing a NN classifier where most of the input features are estimations of gaussian distributions. I.e. one feature has a mu and a sigma value.
The classifier has about 30 input features, 60 if you consider each mu and sigma their own feature.
The number of outputs are 15, i.e. there are 15 possible classifications.
I have about 50k examples to use for training/verification.
I can think of a few different scenarios of how to transform these features into something useful but I am not clever enough to come to any conclusions on how they would impact my results.
First scenario is to just scale and blindly pass each mu and sigma individually. I don't really see how sigma would help the classifier in this case, since it's just a measure of uncertainty. Optimally this would lead to slightly "fuzzier" classifications which possibly could be used for estimating some certainty metric of a classification result.
Second scenario is to generate more test cases by drawing a value from the gaussian of each each of the 30 input features, and then normalizing these random values. This would give me more training data, which could be useful.
As I side note I have the possibility to get more data (about 50k examples more) but I am not sure how accurate that data is so I would like to try with this smaller set first to see if it converges.
The question is: Is there any consensus or interesting paper in the community, describing how to deal with estimated uncertainty in input features?
Thanks!
P.S. Sorry for my bad wording, ML is not my professional domain nor is English my native language.
I am using Adam method in caffe. It has a delta/epsilon tuning parameter (used to avoid divide by zero). In caffe, its default value is 1e-8. I can change it to 1e-6 or 1-e0. From tensorflow, I hear that this parameter will affect to performance of training, especially limited dataset.
The default value of 1e-8 for epsilon might not be a good default in general. For example, when training an Inception network on ImageNet a current good choice is 1.0 or 0.1.
If anyone has experimented with changing this parameter, please give me some advice about the effect of this parameter on performance?
Consider the update equation for Adam: epsilon is to prevent dividing by zero in the case that (the exponentially-decaying average of) the standard deviation of the gradients is zero.
Why would a low value of epsilon cause problems? Perhaps there are cases where some parameters settle to good values before others and having epsilon too low means those parameters get huge learning rates and get pushed away from those good values. I'd guess this would be more problematic in something like a resnet where a lot of the layers have little effect on a large portion of the examples.
On the other hand, setting epsilon higher both limits the parameter-wise learning rate effect and reduces all the learning rates, slowing down training. It's possible to find examples of higher values of epsilon helping simply because the learning rate was too high to begin with.
Given D=(x,y), y=F(x), it seems most machine learning methods only outputs y as a univariate, either a label or a real value. But I am facing a situation that x vector may only have 5~9 dimensions while I need y to be a multinomial distribution vector which can have up to 800 dimensions. This makes the problem really tricky.
I looked into a lot of things in multitask machine learning methods, where I can train all these y_i at the same time. And of course, another stupid way is that I can also train all these dimensions separately without considering the linkage between tasks. But the problem is, after reviewing many papers, seem that most MTL experiments only deal with 10~30 tasks, which means 800 tasks can be crazy and bad to train. Maybe clustering could be a solution, but I am really curious that can anyone give some suggestions about other ways to deal with this problem, not from a MTL perspective.
When the input is so "small" and the output so big, I would expect there to be a different representation of those output values. You could analyze if they are a linear or nonlinear combination of some sort, so to estimate the "function parameters" instead of the values itself. Example: We once have estimated a time series which could be "reduced" to a weighted sum of normal distributions, so we just had to estimate the weights and parameters.
In the end you will reach only a 6-to-12-dimensional subspace in some sense (not linear, probably) when you have only 6 input parameters. They can of course be a bit complicated, but to avoid the chaos in a 800-dim space I would really look into parametrizing the result.
And as I commented the machine learning that I know produce vectors. http://en.wikipedia.org/wiki/Bayes_estimator
When we have a high degree linear polynomial that is used to fit a set of points in a linear regression setup, to prevent overfitting, we use regularization, and we include a lambda parameter in the cost function. This lambda is then used to update the theta parameters in the gradient descent algorithm.
My question is how do we calculate this lambda regularization parameter?
The regularization parameter (lambda) is an input to your model so what you probably want to know is how do you select the value of lambda. The regularization parameter reduces overfitting, which reduces the variance of your estimated regression parameters; however, it does this at the expense of adding bias to your estimate. Increasing lambda results in less overfitting but also greater bias. So the real question is "How much bias are you willing to tolerate in your estimate?"
One approach you can take is to randomly subsample your data a number of times and look at the variation in your estimate. Then repeat the process for a slightly larger value of lambda to see how it affects the variability of your estimate. Keep in mind that whatever value of lambda you decide is appropriate for your subsampled data, you can likely use a smaller value to achieve comparable regularization on the full data set.
CLOSED FORM (TIKHONOV) VERSUS GRADIENT DESCENT
Hi! nice explanations for the intuitive and top-notch mathematical approaches there. I just wanted to add some specificities that, where not "problem-solving", may definitely help to speed up and give some consistency to the process of finding a good regularization hyperparameter.
I assume that you are talking about the L2 (a.k. "weight decay") regularization, linearly weighted by the lambda term, and that you are optimizing the weights of your model either with the closed-form Tikhonov equation (highly recommended for low-dimensional linear regression models), or with some variant of gradient descent with backpropagation. And that in this context, you want to choose the value for lambda that provides best generalization ability.
CLOSED FORM (TIKHONOV)
If you are able to go the Tikhonov way with your model (Andrew Ng says under 10k dimensions, but this suggestion is at least 5 years old) Wikipedia - determination of the Tikhonov factor offers an interesting closed-form solution, which has been proven to provide the optimal value. But this solution probably raises some kind of implementation issues (time complexity/numerical stability) I'm not aware of, because there is no mainstream algorithm to perform it. This 2016 paper looks very promising though and may be worth a try if you really have to optimize your linear model to its best.
For a quicker prototype implementation, this 2015 Python package seems to deal with it iteratively, you could let it optimize and then extract the final value for the lambda:
In this new innovative method, we have derived an iterative approach to solving the general Tikhonov regularization problem, which converges to the noiseless solution, does not depend strongly on the choice of lambda, and yet still avoids the inversion problem.
And from the GitHub README of the project:
InverseProblem.invert(A, be, k, l) #this will invert your A matrix, where be is noisy be, k is the no. of iterations, and lambda is your dampening effect (best set to 1)
GRADIENT DESCENT
All links of this part are from Michael Nielsen's amazing online book "Neural Networks and Deep Learning", recommended reading!
For this approach it seems to be even less to be said: the cost function is usually non-convex, the optimization is performed numerically and the performance of the model is measured by some form of cross validation (see Overfitting and Regularization and why does regularization help reduce overfitting if you haven't had enough of that). But even when cross-validating, Nielsen suggests something: you may want to take a look at this detailed explanation on how does the L2 regularization provide a weight decaying effect, but the summary is that it is inversely proportional to the number of samples n, so when calculating the gradient descent equation with the L2 term,
just use backpropagation, as usual, and then add (λ/n)*w to the partial derivative of all the weight terms.
And his conclusion is that, when wanting a similar regularization effect with a different number of samples, lambda has to be changed proportionally:
we need to modify the regularization parameter. The reason is because the size n of the training set has changed from n=1000 to n=50000, and this changes the weight decay factor 1−learning_rate*(λ/n). If we continued to use λ=0.1 that would mean much less weight decay, and thus much less of a regularization effect. We compensate by changing to λ=5.0.
This is only useful when applying the same model to different amounts of the same data, but I think it opens up the door for some intuition on how it should work, and, more importantly, speed up the hyperparametrization process by allowing you to finetune lambda in smaller subsets and then scale up.
For choosing the exact values, he suggests in his conclusions on how to choose a neural network's hyperparameters the purely empirical approach: start with 1 and then progressively multiply÷ by 10 until you find the proper order of magnitude, and then do a local search within that region. In the comments of this SE related question, the user Brian Borchers suggests also a very well known method that may be useful for that local search:
Take small subsets of the training and validation sets (to be able to make many of them in a reasonable amount of time)
Starting with λ=0 and increasing by small amounts within some region, perform a quick training&validation of the model and plot both loss functions
You will observe three things:
The CV loss function will be consistently higher than the training one, since your model is optimized for the training data exclusively (EDIT: After some time I've seen a MNIST case where adding L2 helped the CV loss decrease faster than the training one until convergence. Probably due to the ridiculous consistency of the data and a suboptimal hyperparametrization though).
The training loss function will have its minimum for λ=0, and then increase with the regularization, since preventing the model from optimally fitting the training data is exactly what regularization does.
The CV loss function will start high at λ=0, then decrease, and then start increasing again at some point (EDIT: this assuming that the setup is able to overfit for λ=0, i.e. the model has enough power and no other regularization means are heavily applied).
The optimal value for λ will be probably somewhere around the minimum of the CV loss function, it also may depend a little on how does the training loss function look like. See the picture for a possible (but not the only one) representation of this: instead of "model complexity" you should interpret the x axis as λ being zero at the right and increasing towards the left.
Hope this helps! Cheers,
Andres
The cross validation described above is a method used often in Machine Learning. However, choosing a reliable and safe regularization parameter is still a very hot topic of research in mathematics.
If you need some ideas (and have access to a decent university library) you can have a look at this paper:
http://www.sciencedirect.com/science/article/pii/S0378475411000607