What does dimensionality reduction mean? - machine-learning

What does dimensionality reduction mean exactly?
I searched for its meaning, I just found that it means the transformation of raw data into a more useful form. So what is the benefit of having data in useful form, I mean how can I use it in a practical life (application)?

Dimensionality Reduction is about converting data of very high dimensionality into data of much lower dimensionality such that each of the lower dimensions convey much more information.
This is typically done while solving machine learning problems to get better features for a classification or regression task.
Heres a contrived example - Suppose you have a list of 100 movies and 1000 people and for each person, you know whether they like or dislike each of the 100 movies. So for each instance (which in this case means each person) you have a binary vector of length 100 [position i is 0 if that person dislikes the i'th movie, 1 otherwise ].
You can perform your machine learning task on these vectors directly.. but instead you could decide upon 5 genres of movies and using the data you already have, figure out whether the person likes or dislikes the entire genre and, in this way reduce your data from a vector of size 100 into a vector of size 5 [position i is 1 if the person likes genre i]
The vector of length 5 can be thought of as a good representative of the vector of length 100 because most people might be liking movies only in their preferred genres.
However its not going to be an exact representative because there might be cases where a person hates all movies of a genre except one.
The point is, that the reduced vector conveys most of the information in the larger one while consuming a lot less space and being faster to compute with.

You're question is a little vague, but there's an interesting statistical technique that may be what you're thinking off called Principal Component Analysis which does something similar (and incidentally plotting the results from which was my first real world programming task)
It's a neat, but clever technique which is remarkably widely applicable. I applied it to similarities between protein amino acid sequences, but I've seen it used for analysis everything from relationships between bacteria to malt whisky.
Consider a graph of some attributes of a collection of things where one has two independent variables - to analyse the relationship on these one obviously plots on two dimensions and you might see a scatter of points. if you've three variable you can use a 3D graph, but after that one starts to run out of dimensions.
In PCA one might have dozens or even a hundred or more independent factors, all of which need to be plotted on perpendicular axis. Using PCA one does this, then analyses the resultant multidimensional graph to find the set of two or three axis within the graph which contain the largest amount of information. For example the first Principal Coordinate will be a composite axis (i.e. at some angle through n-dimensional space) which has the most information when the points are plotted along it. The second axis is perpendicular to this (remember this is n-dimensional space, so there's a lot of perpendiculars) which contains the second largest amount of information etc.
Plotting the resultant graph in 2D or 3D will typically give you a visualization of the data which contains a significant amount of the information in the original dataset. It's usual for the technique to be considered valid to be looking for a representation that contains around 70% of the original data - enough to visualize relationships with some confidence that would otherwise not be apparent in the raw statistics. Notice that the technique requires that all factors have the same weight, but given that it's an extremely widely applicable method that deserves to be more widely know and is available in most statistical packages (I did my work on an ICL 2700 in 1980 - which is about as powerful as an iPhone)

http://en.wikipedia.org/wiki/Dimension_reduction
maybe you have heard of PCA (principle component analysis), which is a Dimension reduction algorithm.
Others include LDA, matrix factorization based methods, etc.
Here's a simple example. You have a lot of text files and each file consists some words. There files can be classified into two categories. You want to visualize a file as a point in a 2D/3D space so that you can see the distribution clearly. So you need to do dimension reduction to transfer a file containing a lot of words into only 2 or 3 dimensions.

The dimensionality of a measurement of something, is the number of numbers required to describe it. So for example the number of numbers needed to describe the location of a point in space will be 3 (x,y and z).
Now lets consider the location of a train along a long but winding track through the mountains. At first glance this may appear to be a 3 dimensional problem, requiring a longitude, latitude and height measurement to specify. But this 3 dimensions can be reduced to one if you just take the distance travelled along the track from the start instead.
If you were given the task of using a neural network or some statistical technique to predict how far a train could get given a certain quantity of fuel, then it will be far easier to work with the 1 dimensional data than the 3 dimensional version.

It's a technique of data mining. Its main benefit is that it allows you to produce a visual representation of many-dimensional data. The human brain is peerless at spotting and analyzing patterns in visual data, but can process a maximum of three dimensions (four if you use time, i.e. animated displays) - so any data with more than 3 dimensions needs to somehow compressed down to 3 (or 2, since plotting data in 3D can often be technically difficult).
BTW, a very simple form of dimensionality reduction is the use of color to represent an additional dimension, for example in heat maps.

Suppose you're building a database of information about a large collection of adult human beings. It's also going to be quite detailed. So we could say that the database is going to have large dimensions.
AAMOF each database record will actually include a measure of the person's IQ and shoe size. Now let's pretend that these two characteristics are quite highly correlated. Compared to IQs shoe sizes may be easy to measure and we want to populate the database with useful data as quickly as possible. One thing we could do would be to forge ahead and record shoe sizes for new database records, postponing the task of collecting IQ data for later. We would still be able to estimate IQs using shoe sizes because the two measures are correlated.
We would be using a very simple form of practical dimension reduction by leaving IQ out of records initially. Principal components analysis, various forms of factor analysis and other methods are extensions of this simple idea.

Related

Temporal autocorrelation in spatial bam (gam)

I am modelling fish depth in a river based on acoustic tag detections (meaning the data are not exactly a perfectly spaced continuous time series). I predict that depth will differ based on spatial location in the river because different areas have different depths available, time of day because depth responds to light, day of year for the same reason, and differ among individuals. The basic model is then
depth ~ s(lon, lat) + s(hour) + s(yday) + s(ID, bs="re")
There are a few million detections so the model is a bam, so
bam(depth ~ s(lon, lat) + s(hour) + s(yday) + s(ID, bs="re")
The depth for each individual should be autocorrelated to the previous recording (of course this depends how recently it was last registered, but I don't know quite how to account for the discrete spacing in time).
I understand the rho parameter is used in bam as a sort of corAR1 function, which I guess can account for the autocorrelation. I also considered including lag(depth, by=ID) as a predictor and it performed quite well but I wasn't sure of the validity of this approach.
I followed several breadcrumbs to find that rho can be estimated from a model without a correlation structure rho<-acf(resid(m1), plot=FALSE)$acf2-
For each individual I added an ARSTART variable to call AR.start = df$ARSTART to account for time series differing among individuals- so my model is
m2<-bam(depth~s(lon, lat)+s(yday)+s(hour, bs="cc")+s(fID, bs="re"), AR.start=df$ARSTART, discrete=T, rho=rho, data=df)
Everything works swimmingly, the model with the autocorrelation structure fits better (way better) according to AIC, but the posterior estimates of effects are wildly inaccurate (or badly scaled). The spatial effects according to the lon, lat smoother become extreme (and homogenous) compared to the model without the structure, in which the spatial smoother seems to capture the spatial variance quite effectively, showing that they are predicted to be deeper in the deeper areas and shallower in the shallower areas.
I can provide example code if desired, but the question is, essentially, does it make any sense that the autocorrelation structure would change the values of the posterior estimates so dramatically compared to the model, and is the temporal autocorrelation structure absorbing all the variance that is otherwise associated with the spatial effects (which appear to be negated in the model with the autocorrelation structure)?
Some ideas- I cannot figure out what is best:
blindly follow the AIC without really understanding why the posterior estimates are so odd (huge) or why the spatial effects disappear despite clearly being important based on biological knowledge of the system
report that we fit an autocorrelation structure to the data, it fit well, but didn't change the shape of the relationships and therefore we present results of the model without the structure
model without the autocorrelation structure but with an s(lagDepth) variable as a fixed effect
model change in depth rather than depth, which seems to eliminate some of the autocorrelation.
All help greatly appreciated- thanks so much

Handling geospatial coordinates in machine learning

I'm building a machine learning model where some columns are physical addresses (which I can translate into X / Y coordinates) but I'm a little bit confused on how this will be handled by the ML algorithm.
Is there a particular way to translate a GEO location into columns for use into ML (classification and/or regression) ?
Thanks in advance !
The choice of features would, in general, depend on what kind of relationship you anticipate between the features and the target variable. You are right in saying that post code number itself does not bear any relation to the target. Here the postcode is simply a string, or a category. What kind of model are you planning to use? Linear regression and Decision tree are two examples. These models capture relationships in different ways. As an example for a feature, you could compute the straight line distance between the source and destination, and use that in the model, since intuitively, the farther they are, the higher the transit time is likely to be. What else does the transit time depend on? See if you can relate the factors influencing the travel time to the information that you have, i.e., the postcodes / XY co-ordinates, in some way.
This summarizes the answer we ended up with in the comments of the questions:
This transformation from ZIP codes to geo-coordinates should not be seen as a "split" but only as a way to represent your data in a multidimensional way (in this case the dimension will be 2).
Machine learning algorithms exist for both unidimensional and multidimensional data. The two dimensions can be correlated or uncorrelated, depending on how you define the parameters of the model you choose afterwards.
Moreover, the correlation does not have to be explicitly set in most cases. Only an initial value may be useful, but many algorithm also rely on random initialization or other simple methods that estimate it from a subset of your data. So, for clarity's sake, if you model you data by a Gaussian for example, when estimating the parameters of this Gaussian, the covariance matrix will have non-diagonal term that are non-zeros which will represent the data correlation. You only need not to take an assumption that states that the 2 dimensions are uncorrelated!

Clustering Method Selection in High-Dimension?

If the data to cluster are literally points (either 2D (x, y) or 3D (x, y,z)), it would be quite intuitive to choose a clustering method. Because we can draw them and visualize them, we somewhat know better which clustering method is more suitable.
e.g.1 If my 2D data set is of the formation shown in the right top corner, I would know that K-means may not be a wise choice here, whereas DBSCAN seems like a better idea.
However, just as the scikit-learn website states:
While these examples give some intuition about the algorithms, this
intuition might not apply to very high dimensional data.
AFAIK, in most of the piratical problems we don't have such simple data. Most probably, we have high-dimensional tuples, which cannot be visualized like such, as data.
e.g.2 I wish to cluster a data set where each data is represented as a 4-D tuple <characteristic1, characteristic2, characteristic3, characteristic4>. I CANNOT visualize it in a coordinate system and observes its distribution like before. So I will NOT be able to say DBSCAN is superior to K-means in this case.
So my question:
How does one choose the suitable clustering method for such an "invisualizable" high-dimensional case?
"High-dimensional" in clustering probably starts at some 10-20 dimensions in dense data, and 1000+ dimensions in sparse data (e.g. text).
4 dimensions are not much of a problem, and can still be visualized; for example by using multiple 2d projections (or even 3d, using rotation); or using parallel coordinates. Here's a visualization of the 4-dimensional "iris" data set using a scatter plot matrix.
However, the first thing you still should do is spend a lot of time on preprocessing, and finding an appropriate distance function.
If you really need methods for high-dimensional data, have a look at subspace clustering and correlation clustering, e.g.
Kriegel, Hans-Peter, Peer Kröger, and Arthur Zimek. Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering. ACM Transactions on Knowledge Discovery from Data (TKDD) 3.1 (2009): 1.
The authors of that survey also publish a software framework which has a lot of these advanced clustering methods (not just k-means, but e.h. CASH, FourC, ERiC): ELKI
There are at least two common, generic approaches:
One can use some dimensionality reduction technique in order to actually visualize the high dimensional data, there are dozens of popular solutions including (but not limited to):
PCA - principal component analysis
SOM - self-organizing maps
Sammon's mapping
Autoencoder Neural Networks
KPCA - kernel principal component analysis
Isomap
After this one goes back to the original space and use some techniques that seems resonable based on observations in the reduced space, or performs clustering in the reduced space itself.First approach uses all avaliable information, but can be invalid due to differences induced by the reduction process. While the second one ensures that your observations and choice is valid (as you reduce your problem to the nice, 2d/3d one) but it loses lots of information due to transformation used.
One tries many different algorithms and choose the one with the best metrics (there have been many clustering evaluation metrics proposed). This is computationally expensive approach, but has a lower bias (as reducting the dimensionality introduces the information change following from the used transformation)
It is true that high dimensional data cannot be easily visualized in an euclidean high dimensional data but it is not true that there are no visualization techniques for them.
In addition to this claim I will add that with just 4 features (your dimensions) you can easily try the parallel coordinates visualization method. Or simply try a multivariate data analysis taking two features at a time (so 6 times in total) to try to figure out which relations intercour between the two (correlation and dependency generally). Or you can even use a 3d space for three at a time.
Then, how to get some info from these visualizations? Well, it is not as easy as in an euclidean space but the point is to spot visually if the data clusters in some groups (eg near some values on an axis for a parallel coordinate diagram) and think if the data is somehow separable (eg if it forms regions like circles or line separable in the scatter plots).
A little digression: the diagram you posted is not indicative of the power or capabilities of each algorithm given some particular data distributions, it simply highlights the nature of some algorithms: for instance k-means is able to separate only convex and ellipsoidail areas (and keep in mind that convexity and ellipsoids exist even in N-th dimensions). What I mean is that there is not a rule that says: given the distributiuons depicted in this diagram, you have to choose the correct clustering algorithm consequently.
I suggest to use a data mining toolbox that lets you explore and visualize the data (and easily transform them since you can change their topology with transformations, projections and reductions, check the other answer by lejlot for that) like Weka (plus you do not have to implement all the algorithms by yourself.
In the end I will point you to this resource for different cluster goodness and fitness measures so you can compare the results rfom different algorithms.
I would also suggest soft subspace clustering, a pretty common approach nowadays, where feature weights are added to find the most relevant features. You can use these weights to increase performance and improve the BMU calculation with euclidean distance, for example.

ML / density clustering on house areas. two-component or more mixtures in each dimension

I trying to self-learn ML and came across this problem. Help from more experienced people in the field would be much appreciated!
Suppose i have three vectors with areas for house compartments such as bathroom, living room and kitchen. The data consists of about 70,000 houses. A histogram of each individual vector clearly has evidence for a bimodal distribution, say a two-component gaussian mixture. I now wanted some sort of ML algorithm, preferably unsupervised, that would classify houses according to these attributes. Say: large bathroom, small kitchen, large living-room.
More specifically, i would like an algorithm to choose the best possible separation threshold for each bimodal distribution vector, say large/small kitchen (this can be binary as there we assume evidence for a bimodality), do the same for others and cluster the data. Ideally this would come with some confidence measure so that i could check houses in the intermediate regimes... for instance, a house with clearly a large kitchen, but whose bathroom would fall close to a threshold area/ boundary for large/small bathroom would be put for example on the bottom of a list with "large kitchens and large bathrooms". Because of this reason, first deciding on a threshold (fitting the gausssians with less possible FDR), collapsing the data and then clustering would Not be desirable.
Any advice on how to proceed? I know R and python.
Many thanks!!
What you're looking for is a clustering method: this is basically unsupervised classification. A simple method is k-means, which has many implementations (k-means can be viewed as the limit of a multi-variate Gaussian mixture as the variance tends to zero). This would naturally give you a confidence measure, which would be related to the distance metric (Euclidean distance) between the point in question and the centroids.
One final note: I don't know about clustering each attribute in turn, and then making composites from the independent attributes: why not let the algorithm find the clusters in multi-dimensional space? Depending on the choice of algorithm, this will take into account covariance in the features (big kitchen increases the probability of big bedroom) and produce natural groupings you might not consider in isolation.
Sounds like you want EM clustering with a mixture of Gaussians model.
Should be in the mclust package in R.
In addition to what the others have suggested, it is indeed possible to cluster (maybe even density-based clustering methods such as DBSCAN) on the individual dimensions, forming one-dimensional clusters (intervals) and working from there, possibly combining them into multi-dimensional, rectangular-shaped clusters.
I am doing a project involving exactly this. It turns out there are a few advantages to running density-based methods in one dimension, including the fact that you can do what you are saying about classifying objects on the border of one attribute according to their other attributes.

What is the relation between the number of Support Vectors and training data and classifiers performance? [closed]

Closed. This question does not meet Stack Overflow guidelines. It is not currently accepting answers.
This question does not appear to be about programming within the scope defined in the help center.
Closed 2 years ago.
Improve this question
I am using LibSVM to classify some documents. The documents seem to be a bit difficult to classify as the final results show. However, I have noticed something while training my models. and that is: If my training set is for example 1000 around 800 of them are selected as support vectors.
I have looked everywhere to find if this is a good thing or bad. I mean is there a relation between the number of support vectors and the classifiers performance?
I have read this previous post but I am performing a parameter selection and also I am sure that the attributes in the feature vectors are all ordered.
I just need to know the relation.
Thanks.
p.s: I use a linear kernel.
Support Vector Machines are an optimization problem. They are attempting to find a hyperplane that divides the two classes with the largest margin. The support vectors are the points which fall within this margin. It's easiest to understand if you build it up from simple to more complex.
Hard Margin Linear SVM
In a training set where the data is linearly separable, and you are using a hard margin (no slack allowed), the support vectors are the points which lie along the supporting hyperplanes (the hyperplanes parallel to the dividing hyperplane at the edges of the margin)
All of the support vectors lie exactly on the margin. Regardless of the number of dimensions or size of data set, the number of support vectors could be as little as 2.
Soft-Margin Linear SVM
But what if our dataset isn't linearly separable? We introduce soft margin SVM. We no longer require that our datapoints lie outside the margin, we allow some amount of them to stray over the line into the margin. We use the slack parameter C to control this. (nu in nu-SVM) This gives us a wider margin and greater error on the training dataset, but improves generalization and/or allows us to find a linear separation of data that is not linearly separable.
Now, the number of support vectors depends on how much slack we allow and the distribution of the data. If we allow a large amount of slack, we will have a large number of support vectors. If we allow very little slack, we will have very few support vectors. The accuracy depends on finding the right level of slack for the data being analyzed. Some data it will not be possible to get a high level of accuracy, we must simply find the best fit we can.
Non-Linear SVM
This brings us to non-linear SVM. We are still trying to linearly divide the data, but we are now trying to do it in a higher dimensional space. This is done via a kernel function, which of course has its own set of parameters. When we translate this back to the original feature space, the result is non-linear:
Now, the number of support vectors still depends on how much slack we allow, but it also depends on the complexity of our model. Each twist and turn in the final model in our input space requires one or more support vectors to define. Ultimately, the output of an SVM is the support vectors and an alpha, which in essence is defining how much influence that specific support vector has on the final decision.
Here, accuracy depends on the trade-off between a high-complexity model which may over-fit the data and a large-margin which will incorrectly classify some of the training data in the interest of better generalization. The number of support vectors can range from very few to every single data point if you completely over-fit your data. This tradeoff is controlled via C and through the choice of kernel and kernel parameters.
I assume when you said performance you were referring to accuracy, but I thought I would also speak to performance in terms of computational complexity. In order to test a data point using an SVM model, you need to compute the dot product of each support vector with the test point. Therefore the computational complexity of the model is linear in the number of support vectors. Fewer support vectors means faster classification of test points.
A good resource:
A Tutorial on Support Vector Machines for Pattern Recognition
800 out of 1000 basically tells you that the SVM needs to use almost every single training sample to encode the training set. That basically tells you that there isn't much regularity in your data.
Sounds like you have major issues with not enough training data. Also, maybe think about some specific features that separate this data better.
Both number of samples and number of attributes may influence the number of support vectors, making model more complex. I believe you use words or even ngrams as attributes, so there are quite many of them, and natural language models are very complex themselves. So, 800 support vectors of 1000 samples seem to be ok. (Also pay attention to #karenu's comments about C/nu parameters that also have large effect on SVs number).
To get intuition about this recall SVM main idea. SVM works in a multidimensional feature space and tries to find hyperplane that separates all given samples. If you have a lot of samples and only 2 features (2 dimensions), the data and hyperplane may look like this:
Here there are only 3 support vectors, all the others are behind them and thus don't play any role. Note, that these support vectors are defined by only 2 coordinates.
Now imagine that you have 3 dimensional space and thus support vectors are defined by 3 coordinates.
This means that there's one more parameter (coordinate) to be adjusted, and this adjustment may need more samples to find optimal hyperplane. In other words, in worst case SVM finds only 1 hyperplane coordinate per sample.
When the data is well-structured (i.e. holds patterns quite well) only several support vectors may be needed - all the others will stay behind those. But text is very, very bad structured data. SVM does its best, trying to fit sample as well as possible, and thus takes as support vectors even more samples than drops. With increasing number of samples this "anomaly" is reduced (more insignificant samples appear), but absolute number of support vectors stays very high.
SVM classification is linear in the number of support vectors (SVs). The number of SVs is in the worst case equal to the number of training samples, so 800/1000 is not yet the worst case, but it's still pretty bad.
Then again, 1000 training documents is a small training set. You should check what happens when you scale up to 10000s or more documents. If things don't improve, consider using linear SVMs, trained with LibLinear, for document classification; those scale up much better (model size and classification time are linear in the number of features and independent of the number of training samples).
There is some confusion between sources. In the textbook ISLR 6th Ed, for instance, C is described as a "boundary violation budget" from where it follows that higher C will allow for more boundary violations and more support vectors.
But in svm implementations in R and python the parameter C is implemented as "violation penalty" which is the opposite and then you will observe that for higher values of C there are fewer support vectors.

Resources