I have a subclass of NSProxy designed to forward messages to either an object instance or to Lua functions if they are defined for the selector. This works in most cases. UITableViewController, however, is a different case altogether. When I set up my proxy object with an instance of UITableViewController (or a stub subclass) it doesn't seem to ever receive any of the UITableViewDelegate or UITableViewDatasource messages that I expect it to.
I have the necessary methods implemented up in Lua, and they respond correctly when called manually, but they never seem to be called when I add the proxy UIViewController view to the hierarchy. What might I be missing?
You're probably getting tripped up by the way that some UIKit classes handle their delegate connection. They keep a set of flags internally indicating what messages the delegate can respond to. When you set the delegate or datasource outlet, the TableView will send several -respondsToSelector: messages to the object in question, and remember which ones returned TRUE.
Related
I have tried to make a location autocomplete text view class by subclassing UITextField and use Google Place Autocomplete API. This works great, but I have a design error due to the implementation. To observe when the user types text, I set the UITextFieldDelegate to self in the custom subclass and track changes to the typed text in textView:shouldChangeTextInRange:replacementText:. This works, but here is the design error: If someone now wants to check what is typed into the custom subclass by setting the delegate to something new, the delegate of my class is not set to the object of the class itself anymore. Now the custom class is useless. Is there any way to either get the text as it is typed without the delegate, prevent the delegate from being changed, or in any other way fix my problem?
A few options I have though about that could work, but in a bad way:
Check regularly what the text property is: Should be obvious why busy waiting is a stupid idea
Override the delegate property and set it to private: Not sure if this will even work, but if it did, the class is no longer a proper subclass of UITextField and all delegate methods are unavailable when implementing my subclass.
Provide a new delegate for further use of the delegate: Allows someone to get the same things as the UITextFieldDelegate provides, but it still messes up the documentation and proper implementation of UITextField
Delegates in UIKit I normally one to one connections. Which can cause the problem you have described.
If you want multiple delegates of a UITextField I would derive a class from UITextField for example MYTextField and add a method to addDelegate and removeDelegate that maintains a list of delegates. The sent the MYTextField's delegate to itself and broadcast any delegate method to all listeners in the delegate array.
this post shows example code on how do maintain a list of multiple delegates.
Delegation to multiple objects
Right now I have a view controller that handles a lot of network requests. They are each a subclass of a NetworkRequest class and this view controller is the delegate of all of them. It implements one callback function, networkRequestDidFinish.
The problem is that all these network requests are separate objects, and they will all call that same function. What is the proper way to design this? Right now I go through a bunch of if statements in networkRequestDidFinish to see what kind of network request returned. It feels wrong though, but I am not sure what is conventional to do in this case.
Thanks.
One useful pattern here is to be sure that the delegate methods pass self to the view controller. It sounds like you might already be doing this - if you're using a series of if statements, you probably have a pointer to the relevant NetworkRequest. If you aren't, or are not sure, read on.
You see this pattern pretty much wherever delegation is used. As an arbitrary example, take the UITableViewDelegate protocol. The first argument of each of the delegate methods is a UITableView. For example:
- (CGFloat)tableView:(UITableView *)tableView heightForRowAtIndexPath:(NSIndexPath *)indexPath
When a UITableView instance calls this delegate method, it passes self as that first argument. It does something like:
[self.delegate tableView:self heightForRowAtIndexPath:0];
Then, the delegate knows which UITableView it's dealing with, because it has a pointer dropped in its lap, as the argument tableView.
In your case, I would start by adding a parameter to the delegate method networkRequestDidFinish, changing its signature to:
- (void)networkRequestDidFinish:(NetworkRequest *)networkRequest
That way you can tell which instance of NetworkRequest has called the delegate method.
Already had that, or that's not good enough? Well, the next thing I'd say would be to consider whether you really need to perform different actions based on the actual class of the NetworkRequest instance that's calling the delegate method. If you're just passing along the data, the answer is probably no. For example:
- (void)networkRequestDidFinish:(NetworkRequest *)networkRequest {
[self processData:networkRequest.data];
}
That method doesn't care what class networkRequest really is. But you seem to care, since you're doing "a bunch of if statements." Then I would say that it might be a mistake to have them all hitting one delegate method. Instead, you might want to get rid of a delegate on NetworkRequest, and instead add a protocol to each of the subclasses of that class, specific to the subclass.
What?
Let's look at an example.
Imagine that one of the subclasses of NetworkRequest is FooNetworkRequest which, of course, requests foos. Its header might look like this:
// stuff...
#protocol FooNetworkRequestDelegate
- (void)fooNetworkRequestDidFinish:(FooNetworkRequest *)fooNetworkRequest;
#end
#interface FooNetworkRequest : NetworkRequest
#property (weak, nonatomic) id<FooNetworkRequestDelegate> delegate;
// stuff...
#end
You apply a similar treatment to all the other subclasses of NetworkRequest. Then, your view controller would adopt each of these protocols, and have a separate method for each subclass of NetworkRequest.
That still seems kind of dirty, right? It does to me. Maybe this is a hint that your view controller is trying to handle too many things at once. You should consider trying to spread out the responsibility for all these NetworkRequest subclasses to multiple view controller or model classes.
If that's not an option, you can at least make your view controller's source a little easier to read by using one or more categories. Put your view controller's main behavior in its .m file, as usual, and then create a category on that view controller that adopts the proper protocol(s) and handles the requests.
There are generally 2 nice procedures.
You can use block instead of the delegate. That means you can send a block to your request class either when instancing it or when you make the request.
Use a target/selector pair system to make it look kind of like adding a target to an UIButton. NSInvocation should do the trick.
Whenever I create a UI object such as UITextField programmatically, I do this:
txt.delegate = self;
A compiler warning appears and asks me to add UITextFieldDelegate in the .h file.
I noticed though that it makes no difference with or without, the code works fine either way.
But the compiler warning disappears. Why is this?
You don't actually need to set the delegate property on your objects unless you are actually using the delegate methods. For example, if you need to know when the UITextField is about to begin editing. If you don't need to know when these things occur, you don't need to set the delegate.
Looking at it the other way, if you make your class conform to a delegate method (by adding <SomeClassDelegate> in the .h file), and then forget to implement required delegate methods, you'll get a warning from the compiler, and a crash when the app runs (and sends a required delegate message to your object).
To answer your question about not adding UITextFieldDelegate to your .h file, imagine your friend is looking for a French translator. You find a foreign looking man and introduce him. Your friend asks "But can he speak French?" You reply "I don't know". This is your warning.
I am learning to program the iphone and I wanted to do some drawing. I followed some example code and subclassed the viewcontroller and it worked fine. Now as I wanted to expand the program I came upon a design question that I could use a little help on.
I subclass myviewcontroller with mynewview. If I have any code in the myviewcontroller how do I call or reference it in mynewview and vice versa? I am not sure if I am asking this right but I am trying to understand the relationship between the class and subclass.
Objective-C objects benefit from inheritance. All classes are subclasses of NSObject, therefore you can call init on any object. If you created a custom class and gave it a method doSomethingAwesome, you are free to then implement doSomethingAwesome in any subclass of your custom class. However, declaring a method in a subclass does not add that method to the superclass. As an aside, I rarely find myself subclass sing my own custom classes. I believe that it is encouraged to maintain what is called a shallow object hierarchy. Usually I subclass the stock cocoa classes, customize to my needs and if I need custom methods in more than one subclass I will declare a category on the superclass rather than relying on inheritance to provide my custom behavior
The messaging system in Objective-C is dynamic. Every object includes a struct with information that the runtime use for introspection. Here the runtime will find a list of methods the object is able to respond. So, let's say you message an instance like this:
[mynewview someMethod];
The runtime will first check the object information to trying to find some method that will be able to respond the message. If nothing is found, then will query the super class, and so on. In fact, the runtime is much more complex, and will give any object more opportunities to respond (that's the dynamic part. For instance, mynewview might not have any method called someMethod and yet, might be able to satisfy the call, but that's something you might not want to worry right now).
From a child class you can call the superclass implementation of a given method with the keyboard super, so if mynewview is a subclass of myviewcontroller you can call myviewcontroller implementation from mynewview with:
[super someMethod];
If someMethod is both present in myviewcontroller and in mynewview, the runtime will automatically only call the child implementation, you have to call the parent implementation (if you have to) from the child implementation.
I recently did a programmatic alloc/init of a table cell subclass, and with some NSLog's, I was able to learn that pretty much all of the initializers were being called even though all I did was alloc/init, if I recall correctly.
init
initWithStyle
What is the logic to this?
Which one calls which?
Everything traces back to init. A UITableViewCell is a subclass of NSObject, so it has an init method.
initWithFrame is deprecated, and has been for some time (since iOS 3). You shouldn't be using it.
It was replaced in iOS 3 with initWithStyle, which you use to indicate what style of cell you'd like to create.
initWithCoder is another NSObject method, part of the NSCoding protocol. Again, you can see it in UITableViewCell because it is a sub-class of NSObject. initWithCoder is used to unarchive an object (perhaps you have saved an object directly to a file, for example).
You can tell which calls which by looking at the order in which the log messages appear.
A common pattern in Objective-C code is to have a "designated initialiser", which actually creates and returns a configured instance of the class. All of the other initialisers call the designated initialiser with fixed values for some of the parameters that weren't specified by the caller, or provide further configuration once the designated initialiser has returned.