Free data warehousing systems--specifically, for data storage - data-warehouse

I am building out some reporting stuff for our website (a decent sized site that gets several million pageviews a day), and am wondering if there are any good free/open source data warehousing systems out there.
Specifically, I am looking for only something to store the data--I plan to build a custom front end/UI to it so that it shows the information we care about. However, I don't want to have to build a customized database for this, and while I'm pretty sure an SQL database would not work here, I'm not sure what to use exactly. Any pointers to helpful articles would also be appreciated.
Edit: I should mention--one DB I have looked at briefly was MongoDB. It seems like it might work, but their "Use Cases" specifically mention data warehousing as "Less Well Suited": http://www.mongodb.org/display/DOCS/Use+Cases . Also, it doesn't seem to be specifically targeted towards data warehousing.

http://www.hypertable.org/ might be what you are looking for is (and I'm going by your descriptions above here) something to store large amounts of logged data with normalization. i.e. a visitor log.
Hypertable is based on google's bigTable project.
see http://code.google.com/p/hypertable/wiki/PerformanceTestAOLQueryLog for benchmarks
you lose the relational capabilities of SQL based dbs but you gain a lot in performance. you could easily use hypertable to store millions of rows per hour (hard drive space withstanding).
hope that helps

I may not understand the problem correctly -- however, if you find some time to (re)visit Kimball’s “The Data Warehouse Toolkit”, you will find that all it takes for a basic DW is a plain-vanilla SQL database, in other words you could build a decent DW with MySQL using MyISAM for the storage engine. The question is only in desired granularity of information – what you want to keep and for how long. If your reports are mostly periodic, and you implement a report storage or cache, than you don’t need to store pre-calculated aggregations (no need for cubes). In other words, Kimball star with cached reporting can provide decent performance in many cases.
You could also look at the community edition of “Pentaho BI Suite” (open source) to get a quick start with ETL, analytics and reporting -- and experiment a bit to evaluate the performance before diving into custom development.
Although this may not be what you were expecting, it may be worth considering.

Pentaho Mondrian
Open source
Uses standard relational database
MDX (think pivot table)
ETL ( via Kettle )
I use this.

In addition to Mike's answer of hypertable, you may want to take a look at Apache's Hadoop project:
http://hadoop.apache.org/
They provide a number of tools which may be useful for your application, including HBase, another implementation of the BigTable concept. I'd imagine for reporting, you might find their mapreduce implementation useful as well.

It all depends on the data and how you plan to access it. MonetDB is a column-oriented database engine from the most revolutionary team on database technologies. They just got VLDB's 10-year best paper award. The DB is open source and there are plenty of reviews online praising them.
Perhaps you should have a look at TPC and see which of their test problem datasets match best your case and work from there.
Also consider the need for concurrency, it adds a big overhead for any kind of approach and sometimes is not really required. For example, you can pre-digest some summary or index data and only have that protected for high concurrency. Profiling your data queries is the following step.
About SQL, I don't like it either but I don't think it's smart ruling out an engine just because of the front-end language.

I see a similar problem and thinking of using plain MyISAM with http://www.jitterbit.com/ as data access layer. Jitterbit (or another free tool alike) seems very nice for this sort of transformations.
Hope this helps a bit.

A lot of people just use Mysql or Postgres :)

Related

How to do some reporting with Rails (with a dedicated DB)

In a Rails app, I am wondering how to build a reporting solution. I heard that I should use a separated database for reporting purposes but knowing that I will need to store a huge amount of data, I have a lot of questions :
What kind of DBMS should I choose?
When should I store data in the reporting database?
Should the database schema of the production db and reporting db be identical?
I am storing basic data (information about users, about result of operations) and I will need for example to run a report to know how many user failed an operation during the previous month.
In now that it is a vague question, but any hint would be highly appreciated.
Thanks!
Work Backwards
Start from what the end-users want for reporting or how they want to/should visualize data. Once you have some concepts in mind, then start working backwards to how to achieve those goals. Starting with the assumption that it should be a replicated copy in an RBDMS excludes several reasonable possibilities.
Making a Real-time Interface
If users are looking to aggregate values (counts, averages, etc.) on the fly (per web request), it would be worthwhile looking into replicating the master down to a reporting database if the SQL performance is acceptable (and stays acceptable if you were to double the input data). SQL engines usually do a great job aggregation and scale pretty far. This would also give you the capability to join data results together and return complex results as the users request it.
Just remember, replication isn't easy or without it's own set of problems.
This'll start to show signs of weakness in the hundreds of millions of rows range with normalized data, in my experience. At some point, inserts fight with selects on the same table enough that both become exceptionally slow (remember, replication is still a stream of inserts). Alternatively, indexes become so large that storage I/O is required for rekeying, so overall table performance diminishes.
Batching
On the other hand, if reporting falls under the scheme of sending standardized reports out with little interaction, I wouldn't necessarily recommend backing to an RBDMS. In this case, results are combined, aggregated, joined, etc. once. Paying the overhead of RBDMS indexing and storage bloat isn't worth it.
Batch engines like Hadoop will scale horizontally (many smaller machines instead of a few huge machines) so processing larger volumes of data is economical.
Batch to RBDMS or K/V Store
This is also a useful path if a lot of computation is needed to make the records more meaningful to a reporting engine. Alternatively, records could be denormalized before storing them in the reporting storage engine. The denormalized or simple results would then be shipped to a key/value store or RBDMS to make reporting easier and achieve higher performance at the cost of latency, compute, and possibly storage.
Personal Advice
Don't over-design it to start with. The decisions you make on the initial implementation will probably all change at some point. However, design it with the current and near-term problems in mind. Also, benchmarks done by others are not terribly useful if your usage model isn't exactly the same as theirs; benchmark your usage model.
I would recommend to to use some pre-build reporting services than to manually write out if you need a large set of reports.
You might want to look at Tableau http://www.tableausoftware.com/ and other available.
Database .. Yes it should be a separate seems safer , plus reporting is generally for old and consolidated data.. you live data might be too large to perform analysis on.
Database type -- > have to choose based on the reporting services used , though I think mongo is not supported by any of the reporting services , mysql is preferred.
If there are only one or two reports you could just build them on rails

When developing web applications when would you use a Graph database versus a Document database?

I am developing a web-based application using Rails. I am debating between using a Graph Database, such as InfoGrid, or a Document Database, such as MongoDB.
My application will need to store both small sets of data, such as a URL, and very large sets of data, such as Virtual Machines. This data will be tied to a single user.
I am interested in learning about peoples experiences with either Graph or Document databases and why they would use either of the options.
Thank you
I don't feel enough experienced with both worlds to properly and fully answer your question, however I'm using a document database for some time and here are some personal hints.
The document databases are based on a concept of key,value, and static views and are pretty cool for finding a set of documents that have a particular value.
They don't conceptualize the relations between documents.
So if your software have to provide advanced "queries" where selection criteria act on several 'types of document' or if you simply need to perform a selection using several elements, the [key,value] concept is not appropriate.
There are also a number of other cases where document databases are inappropriate : presenting large datasets in "paged" tables, sortable on several columns is one of the cases where the performances are low and disk space usage is huge.
So in many cases you'll have to perform "server side" processing in order to pick up the pieces, and with rails, or any other ruby based framework, you might run into performance issues.
The graph database are based on the concept of tripplestore, meaning that they also conceptualize the relations between the entities.
The graph can be traversed using the relations (and entity roles), and might be more convenient when performing searches across relation-structured data.
As I have no experience with graph database, I'm not aware if the graph database can be easily queried/traversed with several criterias, however if an advised reader has such an information I'd really appreciate any examples of such queries/traversals.
I'm currently reading about InfoGrid and trying to figure if such databases could by handy in order to perform complex requests on a very large set of data, relations included ....
From what I can read, the InfoGrah should be considered as a "data federator" able to search/mine the data from several sources (Stores) wich can also be a NoSQL database such as Mongo.
Wich means that you could use a mongo store for updates and InfoGraph for data searching, and maybe spare a lot of cpu and disk when it comes to complex searches inside a nosql database.
Of course it might seem a little "overkill" if your app simply stores a large set of huge binary files in a database and all you need is to perform simple key queries and to retrieve the result. In that cas a nosql database such as mongo or couch would probably be handy.
Hope some of this helps ;)
When connecting related documents by edges, will you get a shallow or a deep graph? I think the answer to that question is important when deciding between graphdbs and documentdbs. See Square Pegs and Round Holes in the NOSQL World by Jim Webber for thoughts along these lines.

Achieving better DB performance

I have a website backed by a relational database comprised of the usual e-commerce related tables (Order, OrderItem, ShoppingCart, CreditCard, Payment, Customer, Address, etc...).
The stored proc. which returns order history is painfully slow due to the amount of data + the numerous joins which must occur, and depending on the search parameters it sometimes times out (despite the indexing that is in place).
The DB schema is pretty well normalized and I believe I can achieve better performance by moving toward something like a data warehouse. DW projects aren't trivial and then there's the issue of keeping the data in sync so I was wondering if anyone knows of a shortcut. Perhaps an out-of the box solution that will create the DW schema and keep the data in sync (via triggers perhaps). I've heard of Lucene but it seems geared more toward text searches and document management. Does anyone have other suggestions?
How big is your database?
There's not really any shortcuts, but dimensional modelling is really NOT that hard. You first determine a grain and then need to identify your facts and the dimensions associated with the facts. Then you divide the dimensions into tables which allow you to have the dimensions only grow slowly over time. The choice of dimensions is completely practical and based on the data behavior.
I recommend you have a look at Kimball's books.
For a database of a few GB, it's certainly possible to update a reporting database from scratch several times a day (no history, just repopulating from a 3NF for a different model of the same data). There are certain realtime data warehousing techniques which just apply changes continuously throughout the day.
So while DW projects might not be trivial, the denormalization techniques are very approachable and usable without necessarily building a complete time-invariant data warehouse.
Materialized Views are what you might use in Oracle. They give you the "keeping the data in sync" feature you are looking for combined with fast access of aggregate data. Since you didn't mention any specifics (platform, server specs, number of rows, number of hits/second, etc) of your platform, I can't really help much more than that.
Of course, we are assuming you've already checked that all your SQL is written properly and optimally, that your indexing is correct, that you are properly using caching in all levels of your app, that your DB server has enough RAM, fast hard drives, etc.
Also, have you considered denormalizing your schema, just enough to serve up your most common queries faster? that's better than implementing an entire data warehouse, which might not even be what you want anyway. Usually a data warehouse is for reporting purposes, not for serving interactive apps.

Opinion Mining - What Database Type?

I am entering a project to make a Opinion Mining (Data Mining -> Web Mining -> Opinion Mining) to get semantic orientation of the words contained. We will use a crawler to get the pages opinion. Now the question is, what type of DataBase should I use (OO, Relational, hierachycal, etc), is best to use in this type of project.
I know this is a specific question, Im not expecting everybodies response but at least someone that already did it, that would help.
Regards!
If you need something large scale and responsive, you would probably need to go for Google's BigTable or something of that nature. At the prototype level, I am sure you can use traditional relational databases, but at certain point you'd hit the performance wall. See Brewer's CAP Theorem.
From my experience in such kind of scenarios a relational database can serve your purpose pretty well. You need to be extra careful when storing the web content part of it - whether you want to at all use a database to store it or will storing on as simple as a file system can do. BLOBs specially require extra care and they increase your maintenance work.
Also based on the nature of the project, you would certainly be using a lot of already built in components etc. many of which would already support/easy to extend to use a relational DB as a data store.

Ruby On Rails/Merb as a frontend for a billions of records app

I am looking for a backend solution for an application written in Ruby on Rails or Merb to handle data with several billions of records. I have a feeling that I'm supposed to go with a distributed model and at the moment I looked at
HBase with Hadoop
Couchdb
Problems with HBase solution as I see it -- ruby support is not very strong, and Couchdb did not reach 1.0 version yet.
Do you have suggestion what would you use for such a big amount of data?
Data will require rather fast imports sometimes of 30-40Mb at once, but imports will come in chunks. So ~95% of the time data will be read only.
Depending on your actual data usage, MySQL or Postgres should be able to handle a couple of billion records on the right hardware. If you have a particular high volume of requests, both of these databases can be replicated across multiple servers (and read replication is quite easy to setup (compared to multiple master/write replication).
The big advantage of using a RDBMS with Rails or Merb is you gain access to all of the excellent tool support for accessing these types of databases.
My advice is to actually profile your data in a couple of these systems and take it from there.
There's a number of different solutions people have used. In my experience it really depends more on your usage patterns related to that data and not the sheer number of rows per table.
For example, "How many inserts/updates per second are occurring." Questions like these will play into your decision of what back-end database solution you'll choose.
Take Google for example: There didn't really exist a storage/search solution that satisfied their needs, so they created their own based on a Map/Reduce model.
A word of warning about HBase and other projects of that nature (don't know anything about CouchDB -- I think it's not really a db at all, just a key-value store):
Hbase is not tuned for speed; it's tuned for scalability. If response speed is at all an issue, run some proofs of concept before you commit to this path.
Hbase does not support joins. If you are using ActiveRecord and have more than one relation.. well you can see where this is going.
The Hive project, also built on top of Hadoop, does support joins; so does Pig (but it's not really sql). Point 1 applies to both. They are meant for heavy data processing tasks, not the type of processing you are likely to be doing with Rails.
If you want scalability for a web app, basically the only strategy that works is partitioning your data and doing as much as possible to ensure the partitions are isolated (don't need to talk to each other). This is a little tricky with Rails, as it assumes by default that there is one central database. There may have been improvements on that front since I looked at the issue about a year and a half ago. If you can partition your data, you can scale horizontally fairly wide. A single MySQL machine can deal with a few million rows (PostgreSQL can probably scale to a larger number of rows but might work a little slower).
Another strategy that works is having a master-slave set up, where all writes are done by the master, and reads are shared among the slaves (and possibly the master). Obviously this has to be done fairly carefully! Assuming a high read/write ratio, this can scale pretty well.
If your organization has deep pockets, check out what Vertica, AsterData, and Greenplum have to offer.
The backend will depend on the data and how the data will be accessed.
But for the ORM, I'd most likely use DataMapper and write a custom DataObjects adapter to get to whatever backend you choose.
I'm not sure what CouchDB not being at 1.0 has to do with it. I'd recommend doing some testing with it (just generate a billion random documents) and see if it'll hold up. I'd say it will, despite not having a specific version number.
CouchDB will help you a lot when it comes to partitioning/sharding your data and like, seems like it might fit with your project -- especially if your data format might change in the future (adding or removing fields) since CouchDB databases have no schema.
There are plenty of optimizations in CouchDB for read-heavy apps as well and, based on my experience with it, is where it really shines.

Resources