Image Comparison - image-processing

What is the efficient way to compare two images in visual c..?
Also in which format images has to be stored.(bmp, gif , jpeg.....)?
Please provide some suggestions

If the images you are trying to compare have distinctive characteristics that you are trying to differentiate then PCA is an excellent way to go. The question of what format of the file you need is irrelevant really; you need to load it into the program as an array of numbers and do analysis.

Your question opens a can of worms in terms of complexity.
If you want to compare two images to check if they are the same, then you need to perform an md5 on the file (removing possible metainfos which could distort your result).
If you want to compare if they look the same, then it's a completely different story altogether. "Look the same" is intended in a very loose meaning (e.g. they are exactly the same image but stored with two different file formats). For this, you need advanced algorithms, which will give you a probability for two images to be the same. Not being an expert in the field, I would perform the following "invented out of my head" algorithm:
take an arbitrary set of pixel points from the image.
for each pixel "grow" a polygon out of the surrounding pixels which are near in color (according to HSV colorspace)
do the same for the other image
for each polygon of one image, check the geometrical similitude with all the other polygons in the other image, and pick the highest value. Divide this value by the area of the polygon (to normalize).
create a vector out of the highest values obtained
the higher is the norm of this vector, the higher is the chance that the two images are the same.
This algorithm should be insensitive to color drift and image rotation. Maybe also scaling (you normalize against the area). But I restate: not an expert, there's probably much better, and it could make kittens cry.

I did something similar to detect movement from a MJPEG stream and record images only when movement occurs.
For each decoded image, I compared to the previous using the following method.
Resize the image to effectively thumbnail size (I resized fairly hi-res images down by a factor of ten
Compare the brightness of each pixel to the previous image and flag if it is much lighter or darker (threshold value 1)
Once you've done that for each pixel, you can use the count of different pixels to determine whether the image is the same or different (threshold value 2)
Then it was just a matter of tuning the two threshold values.
I did the comparisons using System.Drawing.Bitmap, but as my source images were jpg, there were some artifacting.
It's a nice simple way to compare images for differences if you're going to roll it yourself.

If you want to determine if 2 images are the same perceptually, I believe the best way to do it is using an Image Hashing algorithm. You'd compute the hash of both images and you'd be able to use the hashes to get a confidence rating of how much they match.
One that I've had some success with is pHash, though I don't know how easy it would be to use with Visual C. Searching for "Geometric Hashing" or "Image Hashing" might be helpful.

Testing for strict identity is simple: Just compare every pixel in source image A to the corresponding pixel value in image B. If all pixels are identical, the images are identical.
But I guess don't want this kind of strict identity. You probably want images to be "identical" even if certain transformations have been applied to image B. Examples for these transformations might be:
changing image brightness globally (for every pixel)
changing image brightness locally (for every pixel in a certain area)
changing image saturation golbally or locally
gamma correction
applying some kind of filter to the image (e.g. blurring, sharpening)
changing the size of the image
rotation
e.g. printing an image and scanning it again would probably include all of the above.
In a nutshell, you have to decide which transformations you want to treat as "identical" and then find image measures that are invariant to those transformations. (Alternatively, you could try to revert the translations, but that's not possible if the transformation removes information from the image, like e.g. blurring or clipping the image)

Related

comparing two Binary images in opencv

I have two binary images of hand which are almost same.How should I compare them to know whether they represent almost same shape or not.I have tried finding euclidean distance between two images but its not giving correct answer if the image is slightly changed or moved to left or right or slight decrease in size.I have also tried HOG descriptors in opencv still I am unable to get correct answer if I compare more than one image.What is the best way to compare two binary images based on shape or any feature to know nearly matching images not considering the size of the image.Links to images are http://postimg.org/image/w20tuuzmv/ and http://postimg.org/image/jndr4br9x/
I think that Generalized Hough transform might be a good solution for you. Here is a tutorial about it.
Alternatively uou can try to cut hand from one image (just use contour bounding rect) and than use it as a template and search for it in second image using template matching technique - here you can read more about. When you will find point with highest correlation value, you need to decide whether it is big enough - you need to find threshold on your own.
Are the images just rotated, translated and scaled? If so you could compute the principal components of the images using PCA, then rotate the images so that the first component is in a certain direction (e.g. always vertical) you could then compute the centroids of the images and translate them to be always in the same position (e.g. center of the image), to use always the same scale you could resize the images so that the sum of the distances between each white pixel with the centroid is the same in both images. Now it's easy to compare the images for example score = np.sum(A==B)

How to identify changes in two images of same object

I have two images which I know represent the exact same object. In the picture below, they are referred as Reference and Match.
The image Match can undergo the following transformations compared to Reference:
The object may have changed its appearance locally by addition(e.g. dirt or lettering added to the side) or omission (side mirror has been taken out).
Stretched or reduced in size horizontally only (it is not resized in vertical direction)
Portions of Reference image are not present in Match (shaded in red in Reference Image).
Question: How can the regions which have "changed" in the ways mentioned above be identified ?
Idea#1: Dynamic Time Warping seems like a good candidate once the beginning and end of Match image (numbered 1 and 3 in the image) are aligned with corresponding columns in Reference Image, but I am not sure how to proceed.
Idea#2: Match SIFT features across images. The tessellation produced by feature point locations breaks up the image into non-uniform tiles. Use feature correspondences across images to determine which tiles to match across images. Use a similarity measure to figure out any changes.
You might want to consider an iterative registration algorithm. Basically you want to perform optimization to find the parameters of the transform, in your case horizontal scaling and horizontal translation. Once you optimize the parameters you will have the transformation between the two images, transform one to match the other, and can then use a subtraction to identify the regions with differences.
For registration take a look at the ITK library.
You can probably do a gradient decent optimization using mutual information as the metric. It has a number of different transforms that will capture translation and scaling. The code should run quickly on the sample images you show.

Image Registration by Manual marking of corresponding points using OpenCV

I have a processed binary image of dimension 300x300. This processed image contains few object(person or vehicle).
I also have another RGB image of the same scene of dimensiion 640x480. It is taken from a different position
note : both cameras are not the same
I can detect objects to some extent in the first image using background subtraction. I want to detect corresponding objects in the 2nd image. I went through opencv functions
getAffineTransform
getPerspectiveTransform
findHomography
estimateRigidTransform
All these functions require corresponding points(coordinates) in two images
In the 1st binary image, I have only the information that an object is present,it does not have features exactly similar to second image(RGB).
I thought conventional feature matching to determine corresponding control points which could be used to estimate the transformation parameters is not feasible because I think I cannot determine and match features from binary and RGB image(am I right??).
If I am wrong, what features could I take, how should I proceed with Feature matching, find corresponding points, estimate the transformation parameters.
The solution which I tried more of Manual marking to estimate transformation parameters(please correct me if I am wrong)
Note : There is no movement of both cameras.
Manually marked rectangles around objects in processed image(binary)
Noted down the coordinates of the rectangles
Manually marked rectangles around objects in 2nd RGB image
Noted down the coordinates of the rectangles
Repeated above steps for different samples of 1st binary and 2nd RGB images
Now that I have some 20 corresponding points, I used them in the function as :
findHomography(src_pts, dst_pts, 0) ;
So once I detect an object in 1st image,
I drew a bounding box around it,
Transform the coordinates of the vertices using the above found transformation,
finally draw a box in 2nd RGB image with transformed coordinates as vertices.
But this doesnt mark the box in 2nd RGB image exactly over the person/object. Instead it is drawn somewhere else. Though I take several sample images of binary and RGB and use several corresponding points to estimate the transformation parameters, it seems that they are not accurate enough..
What are the meaning of CV_RANSAC and CV_LMEDS option, ransacReprojecThreshold and how to use them?
Is my approach good...what should I modify/do to make the registration accurate?
Any alternative approach to be used?
I'm fairly new to OpenCV myself, but my suggestions would be:
Seeing as you have the objects identified in the first image, I shouldn't think it would be hard to get keypoints and extract features? (or maybe you have this already?)
Identify features in the 2nd image
Match the features using OpenCV FlannBasedMatcher or similar
Highlight matching features in 2nd image or whatever you want to do.
I'd hope that because all your features in the first image should be positives (you know they are the features you want), then it'll be relatively straight forward to get accurate matches.
Like I said, I'm new to this so the ideas may need some elaboration.
It might be a little late to answer this and the asker might not see this, but if the 1st image is originally a grayscale then this could be done:
1.) 2nd image ----> grayscale ------> gray2ndimg
2.) Point to Point correspondences b/w gray1stimg and gray2ndimg by matching features.

Image Segmentation for Color Analysis in OpenCV

I am working on a project that requires me to:
Look at images that contain relatively well-defined objects, e.g.
and pick out the color of n-most (it's generic, could be 1,2,3, etc...) prominent objects in some space (whether it be RGB, HSV, whatever) and return it.
I am looking into ways to segment images like this into the independent objects. Once that's done, I'm under the impression that it won't be particularly difficult to find the contours of the segments and analyze them for average or centroid color, etc...
I looked briefly into the Watershed algorithm, which seems like it could work, but I was unsure of how to generate the marker image for an indeterminate number of blobs.
What's the best way to segment such an image, and if it's using Watershed, what's the best way to generate the corresponding marker image of integers?
Check out this possible approach:
Efficient Graph-Based Image Segmentation
Pedro F. Felzenszwalb and Daniel P. Huttenlocher
Here's what it looks like on your image:
I'm not an expert but I really don't see how the Watershed algorithm can be very useful to your segmentation problem.
From my limited experience/exposure to this kind of problems, I would think that the way to go would be to try a sliding-windows approach to segmentation. Basically this entails walking the image using a window of a set size, and attempting to determine if the window encompasses background vs. an object. You will want to try different window sizes and steps.
Doing this should allow you to detect the object in the image, presuming that the images contain relatively well defined objects. You might also attempt to perform segmentation after converting the image to black and white with a certain threshold the gives good separation of background vs. objects.
Once you've identified the object(s) via the sliding window you can attempt to determine the most prominent color using one of the methods you mentioned.
UPDATE
Based on your comment, here's another potential approach that might work for you:
If you believe the objects will have mostly uniform color you might attempt to process the image to:
remove noise;
map original image to reduced color space (i.e. 256 or event 16 colors)
detect connected components based on pixel color and determine which ones are large enough
You might also benefit from re-sampling the image to lower resolution (i.e. if the image is 1024 x 768 you might reduce it to 256 x 192) to help speed up the algorithm.
The only thing left to do would be to determine which component is the background. This is where it might make sense to also attempt to do the background removal by converting to black/white with a certain threshold.

Adaptive threshold Binarization's bad effects

I implemented some adaptive binarization methods, they use a small window and at each pixel the threshold value is calculated. There are problems with these methods:
If we select the window size too small we will get this effect (I think the reason is because of window size is small)
(source: piccy.info)
At the left upper corner there is an original image, right upper corner - global threshold result. Bottom left - example of dividing image to some parts (but I am talking about analyzing image's pixel small surrounding, for example window of size 10X10).
So you can see the result of such algorithms at the bottom right picture, we got a black area, but it must be white.
Does anybody know how to improve an algorithm to solve this problem?
There shpuld be quite a lot of research going on in this area, but unfortunately I have no good links to give.
An idea, which might work but I have not tested, is to try to estimate the lighting variations and then remove that before thresholding (which is a better term than "binarization").
The problem is then moved from adaptive thresholding to finding a good lighting model.
If you know anything about the light sources then you could of course build a model from that.
Otherwise a quick hack that might work is to apply a really heavy low pass filter to your image (blur it) and then use that as your lighting model. Then create a difference image between the original and the blurred version, and threshold that.
EDIT: After quick testing, it appears that my "quick hack" is not really going to work at all. After thinking about it I am not very surprised either :)
I = someImage
Ib = blur(I, 'a lot!')
Idiff = I - Idiff
It = threshold(Idiff, 'some global threshold')
EDIT 2
Got one other idea which could work depending on how your images are generated.
Try estimating the lighting model from the first few rows in the image:
Take the first N rows in the image
Create a mean row from the N collected rows. You know have one row as your background model.
For each row in the image subtract the background model row (the mean row).
Threshold the resulting image.
Unfortunately I am at home without any good tools to test this.
It looks like you're doing adaptive thresholding wrong. Your images look as if you divided your image into small blocks, calculated a threshold for each block and applied that threshold to the whole block. That would explain the "box" artifacts. Usually, adaptive thresholding means finding a threshold for each pixel separately, with a separate window centered around the pixel.
Another suggestion would be to build a global model for your lighting: In your sample image, I'm pretty sure you could fit a plane (in X/Y/Brightness space) to the image using least-squares, then separate the pixels into pixels brighter (foreground) and darker than that plane (background). You can then fit separate planes to the background and foreground pixels, threshold using the mean between these planes again and improve the segmentation iteratively. How well that would work in practice depends on how well your lightning can be modeled with a linear model.
If the actual objects you try to segment are "thinner" (you said something about barcodes in a comment), you could try a simple opening/closing operation the get a lighting model. (i.e. close the image to remove the foreground pixels, then use [closed image+X] as threshold).
Or, you could try mean-shift filtering to get the foreground and background pixels to the same brightness. (Personally, I'd try that one first)
You have very non-uniform illumination and fairly large object (thus, no universal easy way to extract the background and correct the non-uniformity). This basically means you can not use global thresholding at all, you need adaptive thresholding.
You want to try Niblack binarization. Matlab code is available here
http://www.uio.no/studier/emner/matnat/ifi/INF3300/h06/undervisningsmateriale/week-36-2006-solution.pdf (page 4).
There are two parameters you'll have to tune by hand: window size (N in the above code) and weight.
Try to apply a local adaptive threshold using this procedure:
convolve the image with a mean or median filter
subtract the original image from the convolved one
threshold the difference image
The local adaptive threshold method selects an individual threshold for each pixel.
I'm using this approach extensively and it's working fine with images having non uniform background.

Resources