I have an TUpDown control whose Associate is set to an instance of a TEdit subclass. The edit class calls RecreateWnd in its overriden DoEnter method. Unfortunately this kills the buddy connection at the API level which leads to strange behavior e.g. when clicking on the updown arrows.
My problem is that the edit instance doesn't know that it is the buddy of some updown to which it should reconnect and the updown isn't notified of the loss of its buddy. Any ideas how I could reconnect the two?
I noticed how TCustomUpDown.SetAssociate checks that updown and buddy have the same parent and uses this to avoid duplicate associations. So I tried calling my own RecreateWnd method:
procedure TAlignedEdit.RecreateWnd;
var
i: Integer;
c: TControl;
ud: TCustomUpDown;
begin
ud := nil;
for i := 0 to Pred(Parent.ControlCount) do
begin
c := Parent.Controls[i];
if c is TCustomUpDown then
if THACK_CustomUpDown(c).Associate = Self then
begin
ud := TCustomUpDown(c);
Break;
end;
end;
inherited RecreateWnd;
if Assigned(ud) then
begin
THACK_CustomUpDown(ud).Associate := nil;
THACK_CustomUpDown(ud).Associate := Self;
end;
end;
et voila - it works!
You've discovered something rather unfortunate. You set up an association between two controls at the application level, so you should be able to continue to manage that association in application-level code, but the VCL doesn't provide the framework necessary for maintaining that. Ideally, there would be a generic association framework, so associated controls could notify each other that they should update themselves.
The VCL has the beginnings of that, with the Notification method, but that only notifies of components being destroyed.
I think your proposed solution is a little too specific to the task. An edit control shouldn't necessarily know that it's attached to an up-down control, and even if it does, they shouldn't be required to share a parent. On the other hand, writing an entire generic observer framework for this problem would be overkill. I propose a compromise.
Start with a new event property on the edit control:
property OnRecreateWnd: TNotifyEvent read FOnRecreateWnd write FOnRecreateWnd;
Then override RecreateWnd as you did above, but instead of all the up-down-control-specific code, simply trigger the event:
procedure TAlignedEdit.RecreateWnd;
begin
inherited;
if Assigned(OnRecreateWnd) then
OnRecreateWnd(Self);
end;
Now, handle that event in your application code, where you know exactly which controls are associated with each other, so you don't have to search for anything, and you don't need to require any parent-child relationships:
procedure TUlrichForm.AlignedEdit1RecreateWnd(Sender: TObject);
begin
Assert(Sender = AlignedEdit1);
UpDown1.Associate := nil;
UpDown1.Associate := AlignedEdit1;
end;
Try storing the value of the Associate property in a local variable before you call RecreateWnd, then setting it back afterwards.
Related
I'm deriving from TClientdataset and trying to define an 'always run' AfterPost event. I have tried assign my AfterPost event at the constructor, but the derived component does not seem to pick it up
TMyClientDataset = class(TClientDataset)
private
FInserting: Boolean; //set to True at the MyOnNewRecord event
property FuserAfterPost: TDataSetNotifyEvent;
...
public
constructor Create(AOwner: TComponent);
...
implementation
constructor TMyClientDataset.Create(AOwner: TComponent)
begin
...
if Assigned(AfterPost) then
FuserAfterPost := AfterPost;
Afterpost := MyAfterPost;
...
end;
procedure TMyClientDataset.MyAfterPost(Dataset: TDataset);
begin
If Assigned(FuserAfterPost) then
FuserAfterPost(Dataset);
FInserting := False;
end;
What I'm trying to do: On new record, set Finserting := True; On after post, run the user supplied OnAfterPost and set FInserting := False; But the MyAfterpost event won't even run. I'm assuming the constructor is not the right place to do AfterPost := MyAfterPost;? Where should it go?
There's no good place for what you want to do. Because a user of the component may attach a handler or nil to the event handler anytime while the program is running, not just at design time. May detach an existing handler too. Then your code will not run.
For this reason, VCL employs a two step call to event handlers. First is a virtual procedure which, generally, does nothing more than to call a possible event handler. In your case, this is DoAfterPost.
TMyClientDataset = class(TClientDataset)
..
protected
procedure DoAfterPost; override;
...
procedure TMyClientDataset.DoAfterPost;
begin
inherited;
FInserting := False;
end;
For a case when no such opportunity exists, there would be no chance but properly document and hope for the user of the component reads and complies with it. Overriding Loaded would be the right place to backup an existing design-time attached handler.
Sertac's answer is excellent guidance on this type of problem. And yes it does answer the question you asked, but it's missing something.
It seems to me that you have an XY problem, and failed to ask the correct question. There is no need for you to try to manually track FInserting. Delphi already does this. Take a look at TDataSet.State and TDataSetState.
Basically your FInserting is equivalent to State = dsInsert.
Although, as you have pointed out, your FInserting flag is True in OnAfterPost (which makes it misleading, and on that basis is technically a bug).
I have read this article how to add a button to another application. When the Button is added to the parent application, everything seems OK, but when this Button is added to another app called Labform (TLabForm), the code after click is not executed. I created also a descendant to implement simple behavior after click, but no success:
TButton2 = class (TButton)
public
procedure Click; override;
end;
procedure TButton2.Click;
begin
inherited;
MessageBox(ParentWindow, 'Hello', 'Window', MB_OK);
end;
procedure TForm1.btn1Click(Sender: TObject);
var
Button2 : TButton2 ;
Hand: THandle;
begin
// Hand:= FindWindow('TLabForm', 'Labform'); // button added, but SHOWS NO message after click
Hand:= FindWindow('TForm1', 'Form1'); // button added, and SHOWS message after click
if Hand <> 0 then
begin
Button2 := TButton2.Create(self);
Button2.ParentWindow := hand;
Button2.BringToFront;
end
else
ShowMessage('handle not found');
end;
How to solve it?
thanx
Whilst it is technically possible to do what you want, it is excruciatingly difficult. Raymond Chen wrote about this at some length. The executive summary:
Is it technically legal to have a parent/child or owner/owned relationship between windows from different processes? Yes, it is technically legal. It is also technically legal to juggle chainsaws.
So, you are attempting something with difficulty akin to juggling chainsaws. Unless you have a deep understanding of Win32 you've got no chance of succeeding.
So, if you want to modify the GUI of an existing process, and it's not tractable to do so with code in a different process, what can you do? Well, it follows that you need to execute code inside the target process.
That's easy enough to do with DLL injection. Inject a DLL into the process and modify it's UI from that DLL. Still not trivial. You'll have the best chance of success if you subclass a window by replacing the existing window procedure with one of your own. That will allow you to run your UI modification code in the UI thread.
I have a DataSet (TZQuery), which has several boolean fields, that have TDBCheckBoxes assigned to them.
These CheckBoxes have "OnClick" events assigned to them and they are triggered whenever I change field values (which are assigned to checkboxes).
The problem is that I do not need these events triggerred, during many operations i do with the dataset.
I've tried calling DataSet.DisableControls, but then events are called right after i call DataSet.EnableControls.
So my question is - is there a way to disable triggering Data-aware controls events.
Edit (bigger picture):
If an exception happens while let's say saving data, i have to load the default values (or the values i've had before saving it). Now while loading that data, all these events (TDBCheckBoxes and other data-aware controls) are triggered, which do all sorts of operations which create lag and sometimes even unwanted changes of data, i'm looking for an universal solution of disabling them all for a short period of time.
Building on Guillem's post:
Turn off everything:
Traverse each component on the form with the for-loop, shown below, changing the properties to the desired value.
If you want to later revert back to the original property values, then you must save the original value (as OldEvent is used below.)
Edit: The code below shows the key concept being discussed. If components are being added or deleted at run-time, or if you'd like to use the absolutely least amount of memory, then use a dynamic array, and as Pieter suggests, store pointers to the components rather than indexing to them.
const
MAX_COMPONENTS_ON_PAGE = 100; // arbitrarily larger than what you'd expect. (Use a dynamic array if this worries you.
var
OldEvent: Array[0.. MAX_COMPONENTS_ON_PAGE - 1] of TNotifyEvent; // save original values here
i: Integer;
begin
for i := 0 to ComponentCount - 1 do
begin
if (Components[i] is TCheckBox) then
begin
OldEvent[i] := TCheckBox(Components[i]).OnClick; // remember old state
TCheckBox(Components[i]).OnClick := nil;
end
else if (Components[i] is TEdit) then
begin
OldEvent[i] := TEdit(Components[i]).OnClick; // remember old state
TEdit(Components[i]).OnClick := nil;
end;
end;
Revert to former values
for i := 0 to ComponentCount - 1 do
begin
if (Components[i] is TCheckBox) then
TCheckBox(Components[i]).OnClick := OldEvent[i]
else if (Components[i] is TEdit) then
TEdit(Components[i]).OnClick := OldEvent[i];
end;
There may be a way to fold all of the if-statements into one generic test that answers "Does this component have an OnClickEvent" -- but I don't know what it is.
Hopefully someone will constructively criticize my answer (rather than just down voting it.) But, hopefully what I've shown above will be workable.
One way to do this is following:
var
Event : TNotifyEvent;
begin
Event := myCheckbox.OnClick;
try
myCheckbox.OnClick := nil;
//your code here
finally
myCheckbox.OnClick := Event;
end;
end;
HTH
The internal design of the TCustomCheckBox is that it triggers the Click method every time the Checked property if changed. Be it by actually clicking it or setting it in code. And this is happening here when you call EnableControls because the control gets updated to display the value of the linked field in your dataset.
TButtonControl (which is what TCustomCheckBox inherits from) has the property ClicksDisabled. Use this instead of (or in addition to) the DisableControls/EnableControls call. Unfortunately it is protected and not made public by TCustomCheckBox but you can use a small hack to access it:
type
TButtonControlAccess = class(TButtonControl)
public
property ClicksDisabled;
end;
...
TButtonControlAccess(MyCheckBox1).ClicksDisabled := True;
// do some dataset stuff
TButtonControlAccess(MyCheckBox1).ClicksDisabled := False;
Of course you can put this into a method that checks all components and sets this property if the control inherits from TCustomCheckBox or some other criteria.
Originally the question had to be how to access the components in the first place, however I somehow managed to figure it out. I am just learning Delphi so I am prone to dumb and obvious questions. I am also at a stage when I'm not actually writing anything useful, but just messing with random stuff to see how it works and maybe learn something.
Wall of text incoming, i want to explain what i am exploring at the moment...
Basically i have a form1 with a button1, pressing it creates a frame2, that frame2 has a button2, pressing button2 creates a frame3 within frame2 (it being frame3's parent and owner). Each frame has an another freeandnil-button. Upon pressing each button1/2/3, it gets disabled to prevent creating multiple instances. My original problem was that after using freeandnil-button, I couldnt access the button on the previous frame (it worked fine for forms, form1.button1.enabled:=true works fine from within frame2) that got disabled in order to re-enable it (frame2.button1.enabled:=true from within frame3 creates an access violation, I think).
Suppose I write something in the future that requires such communication? So I added an editbox to each frame, with a button on the other to change the editbox text, this is my current working solution:
procedure TFrame2.Button3Click(Sender: TObject);
var i,z:integer;
begin
for i := 0 to ComponentCount - 1 do
if components[i] is tframe3 then
for z := 0 to (components[i] as tframe3).ComponentCount - 1 do
if (components[i] as tframe3).Components[z] is TEdit then
((components[i] as tframe3).Components[z] as TEdit).Text:='ping';
end;
and
procedure TFrame3.Button3Click(Sender: TObject);
var i:integer;
begin
for i := 0 to parent.ComponentCount-1 do
if parent.components[i] is TEdit then
(parent.Components[i] as TEdit).Text:='pong';
end;
If I have a bunch of editboxes or whatever the hell, I suppose I could use Tag property to identify them, however, this much component counting and passing something AS something doesn't really look right or efficient enough to me.
My questions at the moment are: can it be done in a better way? and can someone provide the reasoning why cant I access "parent-frame" components from a "child-frame" in a dumb way (ie: frame2.button1.enabled:=true from within frame3)?
A couple of points:
Controls/Components are usually set to be owned by the form/frame that controls their lifetime and parented to the control that shows them. So when you create a TEdit to sit on a TPanel on a TForm, you would set TForm as the owner and TPanel as the parent of the TEdit. With frames you do the same: the frame is the owner of all controls on it, controls are parented to whatever container on the frame (can be the frame itself) is holding and and is thus reponsible for showing (painting) it.
When you iterate over the children of a control, iterating over Components uses the Owner relation; iterating over Controls uses the Parent relation. So your code above would already do a lot less if it were to iterate over the Controls.
Of course you can reference other controls in a "dumb" way, but you will have to provide for the access method. If you want others (not just child frames) you will at the very least have to declare a method to retrieve that control. Many ways to do this. One is to "ask" the form when you need it (using a method on the form), or have the form set a property on the frame when it is created...
Avoid accessing form's and frame's published properties. They are mainly there for Delphi's streaming system. When you tie your application together using your approach described above it can very soon become one incredibly tangled mess...
Example coming up (sometime this evening), it will take me a bit of time to also explain and I have work to do...
The following example deals only with the ping-pong game between the frames. Freeing any form or frame from one of its own event handlers is not such a good idea. Use the Release method for that as it prevents the form/frame from processing messages after is was freed. (Plenty of questions about this on SO by the way). Also, when you do release a frame from one of its own buttons, you will need to take care that the frame that created it has a chance to nil the references it may have held to that frame otherwise you are setting yourself up for some interesting to debug mayhem. Look into "Notification" and "NotifyControls" and the automatic notification by forms and frames that is sent to their owner/parent so these can remove the control from their components/controls collection. In your example, if you were to release Frame3 from its own "FreeAndNil" button's OnClick event handler, you would have to make sure that the Frame2 responds to the deletion (I think) notification message and nil's any references it holds to Frame3 (besides the ones that will already be cleared automatically in the components/controls collections).
Now, the ping pong game. There are a couple of ways to go about this.
Method 1
The first way is what you already tried with a loop over the components of the other frame. While it certainly is a way to avoid having to "use" the other frame, it is cumbersome and not very concise. Plus when you get more controls on your forms/frames, you will have to add a check on the name to know that you have the correct TEdit. And then you might just as well use the name directly, especially as one frame already has the other frame in its uses clause because it is creating it.
// PingFrame (your Frame2)
uses
...
Pong_fr;
type
TPingFrame = class(TFrame)
...
procedure CreateChildBtnClick(Sender: TObject);
procedure PingPongBtnClick(Sender: TObject);
private
FPong: TPongFrame; // This is the "extra" reference you need to nil when
// freeing the TPongFrame from one of its own event handlers.
...
end;
procedure TPingFrame.CreateChildBtnClick(Sender: TObject);
begin
CreateChildBtn.Enabled := False;
FPong := TPongFrame.Create(Self);
FPong.Parent := ContainerPnl;
FPong.Align := alClient;
end;
procedure TPingFrame.PingPongBtnClick(Sender: TObject);
begin
if Assigned(FPong) then
FPong.Edit1.Text := 'Ping';
end;
And on the other end:
// PongFrame (your Frame3)
type
TPongFrame = class(TFrame)
...
procedure PingPongBtnClick(Sender: TObject);
end;
implementation
uses
Ping_fr;
procedure TPongFrame.PingPong1BtnClick(Sender: TObject);
begin
(Owner as TPingFrame).Edit1.Text := 'Pong called';
end;
This method seems all nice and dandy, but it has drawbacks:
You need to use the unit that holds the TPingFrame (Ping_fr in this example). Not too bad I guess, but... as Ping_fr already uses Pong_fr (the unit holding TPongFrame), you can't have Ping_fr using Pong_fr in the interface section and have Pong_fr using Ping_fr in the interface section as well. Doing so would have Delphi throwing an error because of a circular references. This can be solved by moving one of the uses to the implementation section (as done in the example for the use of Ping_fr in the Pong_fr unit.
A bigger drawback is that there is now a very tight coupling between the two frames. You cannot change the TEdit in either one to another type of control (unless that happens to have a Text property as well) without having to change the code in the other unit as well. Such tight coupling is a cause of major headaches and it is good practice to try and avoid it.
Method 2
One way to decrease the coupling between the frames and allow each frame to change it controls as it sees fit is not to use the controls of another form/frame directly. To do so you declare a method on each frame that the other can call. Each method updates its own controls. And from the OnClick event handlers you no longer access the other frame's controls directly, but you call that method
type
TPingFrame = class(TFrame)
...
public
procedure Ping;
end;
implementation
procedure TPingFrame.PingPongBtnClick(Sender: TObject);
begin
if Assigned(FPong) then
FPong.Ping;
end;
procedure TPingFrame.Ping;
begin
Edit1.Text := 'Someone pinged me';
end;
And on the other end:
type
TPongFrame = class(TFrame)
...
public
procedure Ping;
end;
implementation
procedure TPongFrame.PingPongBtnClick(Sender: TObject);
begin
(Owner as TPingFrame).Ping;
end;
procedure TPongFrame.Ping;
begin
Edit1.Text := 'Someone pinged me';
end;
This is better than Method 1 as it allows both frames to change their controls without having to worryabout "outsiders" referencing them, but still has the drawback of the circular reference that can only be "solved" by moving one "use" to the implementation section.
It is a good practice to try and avoid circular references altogether instead of patching them by moving units to the implementation section's uses clause. A rule of thumb I use is:
Any form/frame may know and use the public interface of the forms/frames it instantiates (though it should avoid the controls in the "default visibility" part of that interface), but no form/frame should not have any knowledge of the specific form/frame that created it.
Method 3
One way of achieving this (there are many) it to use events just like the TButton's OnClick event.
On the TPongFrame side of things you can remove the use of Ping_fr. You no longer need it.
Then you need to declare a property and the field it references and declare a method to fire the event.
type
TPongFrame = class(TFrame)
private
FOnPingPongClicked: TNotifyEvent;
protected
procedure DoPingPongClicked;
public
property OnPingPongClicked: TNotifyEvent
read FOnPingPongClicked write FOnPingPongClicked;
end;
The Ping method stays and its implementation is unchanged. The PingPongBtnClick event handler also stays, but its implementation now becomes:
procedure TPongFrame.PingPongBtnClick(Sender: TObject);
begin
DoPingPongClicked;
end;
procedure TPongFrame.DoPingPongClicked;
begin
if Assigned(FOnPingPongClicked) then
FOnPingPongClicked(Self);
end;
You could put the code from DoPingPongClicked straight in here, but it is a good practice to fire an event in a separate method. It avoids duplicating the exact same code if you would have an event that can be fired from multiple parts of your code. And it also allows descendants (when you get those) to override the "firing" method (you'll have to mark it virtual in the ancestor) and do something specific all the times the event is fired.
On the TPingFrame side of things you need to code a handler for the new event:
type
TPingFrame = class(TFrame)
...
protected
procedure HandleOnPingPongClicked(Sender: TObject);
Note that the signature of this handler needs to be what the TNotifyEvent specifies. And of course you need to ensure that this event handler gets called when the event fires in TPongFrame:
procedure TPingFrame.CreateChildBtnClick(Sender: TObject);
begin
CreateChildBtn.Enabled := False;
FPong := TPongFrame.Create(Self);
FPong.Parent := ContainerPnl;
FPong.Align := alClient;
// Listen to event fired by PongFrame whenever it's PingPingBtn is clicked
FPong.OnPingPongClicked := HandleOnPingPongClicked;
end;
In the handler code you can do what you need to do. It can be general:
procedure TPingFrame.HandleOnPingPongClicked(Sender: TObject);
begin
Edit1.Text := 'OnPingPongClicked event was fired';
end;
And of course you can also use the fact that the event passes a reference to the instance firing the event as well:
procedure TPingFrame.HandleOnPingPongClicked(Sender: TObject);
var
Pong: TPongFrame;
begin
// This checks that Sender actually is a TPongFrame and throws an exception if not
Pong := Sender as TPongFrame;
// Use properties from the Pong instance that was passed in
Edit1.Text := 'OnPingPongClicked event was fired by ' + Pong.Name;
end;
Enjoy!
I have an issues where I am trying to determine if a reference to an object is valid. But it seems to be returning strange results.
procedure TForm1.Button1Click(Sender: TObject);
var form1 : TForm;
ref2 : TControl;
begin
form1 := TForm.Create(nil);
form1.Name := 'CustomForm';
form1.Parent := self; //Main Form
form1.Show;
ref2 := form1;
showmessage(ref2.ClassName+' - '+ref2.Name+' - '+BoolToStr(ref2.visible,true));
freeandnil(form1);
showmessage(ref2.ClassName+' - '+ref2.Name+' - '+BoolToStr(ref2.visible,true));
end;
The first showmessage returns - "TForm - CustomForm - True" (Just like I would expect it to).
The second showmessage return - "TForm - - False". I was actually hoping for some kind of access violation that I could then trap and know that the reference isn't valid.
In my application I need to compile a list of random TForm descendants as they are created and then check later if they have gone away (or are not visible). Unfortunately it is a plugin based system so I can go change all of these Forms to post a "I'm done Message."
Would code like this be safe to use (assuming I actually am checking for access violations)? Does anybody have any ideas what is happening.
Thanks
The problem is that with a certain likelyhood the memory accessed is still reserved by the Delphi memory manager. In that case Windows does not generate any kind of access violation, because that memory belongs to you!
One possibility is to switch to a different Delphi memory manager which can detect the use of freed objects. FastMM4, for example, has several "memory hygiene" checks, which are very useful for debugging, but even then you won't catch all of these errors immediately.
You can download FastMM4 from SourceForge.
Any TComponent (e.g. a TForm descendant) can register for notifications when other components are destroyed.
In your form, call FreeNotification(form) for each form that you wish to be notified of the destruction of. Then on the same form override the Notification() method. When any form (or other component) for which you have called FreeNotification() is destroyed, your Notification() method will be called with a Component parameter referencing the form and an Operation of opRemove.
If I've understood what it is you are trying to achieve, I think this should be enough information to devise an approach to do what you need.
After
freeandnil(form1);
the Delphi memory manager just marks the memory allocated by form1 as free, but all form1 data is still there, and can be accessed via ref2 until the memory manager reuse the freed memory for some other object(s).
You can't check that way if ref2 references a valid object or not. Code like this can't be safe, it is actually a bug.
If you want to obtain a 100% access violation modify the code as follows (here ref2^ = nil if form1 is freed):
procedure TForm1.Button1Click(Sender: TObject);
var form1 : TForm;
ref2 : ^TControl;
begin
form1 := TForm.Create(nil);
form1.Name := 'CustomForm';
form1.Parent := self; //Main Form
form1.Show;
ref2 := #form1;
showmessage(ref2^.ClassName+' - '+ref2^.Name+' - '+BoolToStr(ref2^.visible,true));
freeandnil(form1);
showmessage(ref2^.ClassName+' - '+ref2^.Name+' - '+BoolToStr(ref2^.visible,true));
end;
There is no reliable way to do what you are trying to do using the technique you're attempting. Forms that have "gone away" may have their memory reused, possibly even for a new form.
At best, you could work some mechanism whereby you cache the results of iterating Screen.Forms, but you can still fall foul of accidental duplicates, where a form gets destroyed and another gets reallocated and gets the same object address. That scenario is less likely than the memory being reused for some other object, however.
In a similar case I am using a singleton object that keeps a list of all the created forms.
Each form has a field with a reference to this Object.
TMyForm = class(TForm)
private
//*** This is the reference to the singleton...
FFormHandler: TFormHandler;
public
...
//*** you might want to publish it as a property:
property FormHandler: TFormHandler read FFormHandler write FFormHandler;
end;
You can set this reference e.g. when calling the constructor:
TMyForm.Create(aFormHandler: TFormHandler; aOwner: TComponent)
begin
FFormHandler := aFormHandler;
inherited Create(aOwner);
end;
(Or you could set the field from outside directly after creating the form if you don't want to change the parameters of the constructor).
When the form ist destroyed it notifies the handler and tells him to remove the form from the list - something like that:
TMyForm.Destroy(Sender: TObject);
begin
FFormHandler.RemoveFromFormList(Self);
inherited;
end;
(The details of the track-keeping are not included in the expample - e.g. a method "AddToFomList" or something alike would be needed)
There is one very interesting memory manager. It is called SafeMM: http://blogs.embarcadero.com/medington/2009/10/16/24839 But still it is for debugging only.
Given that you cannot modify the code that is out there in the plugins, all the good solutions about how to write safer code are not applicable to your case.
You have 1 way of doing it by
checking if an Object reference is
still what it's supposed to be by
looking up the VMT. This idea was
first published by Ray Lischner (who advocated for FreeAndNil for that very reason) and
later by Hallvard Vassbotn: see
this SO answer.
Another, better but introducing major slowdown, is to use FastMM4 in FullDebugmode to have it to replace all the freed objects by a TFreeObject instance instead of simply releasing the memory to the available pool.
Note that both methods do not prevent a false positive if another instance of the same class happens to be created at the same memory address. You get a valid object of the right type, just not the original one. (Unlikely in your case, but possible)
it is as simple as comparing against NIL:
// object declaration
Type object;
object = new Type();
...
// here you want to be sure of the existance of the object:
if (object <> nil )
object.free;
If you cannot test in another manner, you can use this as a last resort±
function IsValidClass( Cls: TClass ): Boolean;
var
i: Integer;
begin
for i := 0 to 99 do begin
Result := ( Cls = TObject ); // note that other modules may have a different root TObject!
if Result then Exit;
if IsBadReadPtr( Cls, sizeof( Pointer ) ) then Break;
if IsBadReadPtr( Pointer( Integer( Cls ) + vmtParent ), sizeof( Pointer ) ) then Break;
Cls := Cls.ClassParent;
end;
Result := False;
end;
function IsValidObject( Obj: TObject ): Boolean;
begin
Result := not IsBadReadPtr( Obj, sizeof( Pointer ) ) and IsValidClass( Obj.ClassType ) and not IsBadReadPtr( Obj, Obj.InstanceSize );
end;
IsBadReadPtr comes from Windows.