Questions about the definition of lazy - f#

On line 5633 in prim-types.fs (v1.9.7.8) there is the following type abbreviation:
type 'T ``lazy`` = Lazy<'T>
I have a few questions about it.
What do the double backticks mean?
Is this definition equivalent to type lazy<'T> = Lazy<'T>? (If not, how is it different?)

The double back ticks are a way of allowing an F# keyword to be used as an identifier. Another example would be
let ``let`` = 42

To answer the second half of your question, generic types in F# can be specified using either the O'Caml-style syntax where the generic parameter precedes the type (e.g 'a list, int array, etc.), or the .NET-style with angle brackets (e.g. list<'a>, array<int>, etc.), so the two definitions are indeed basically equivalent (except that your version as written is syntactically invalid because lazy is a keyword). For multi-parameter generic types, the O'Caml style is deprecated and will generate a warning (e.g. let (m:(int,string) Map) = Map.empty should be rewritten as let (m:Map<int,string>) = Map.empty).

Related

Type to represent a string which is not empty or spaces in F#

I love the simplicity of types like
type Code = Code of string
But I would like to put some restrictions on string (in this case - do not allow empty of spaces-only strings). Something like
type nonemptystring = ???
type Code = Code of nonemptystring
How do I define this type in F# idiomatic way? I know I can make it a class with constructor or a restricted module with factory function, but is there an easy way?
A string is essentially a sequence of char values (in Haskell, BTW, String is a type alias for [Char]). A more general question, then, would be if it's possible to statically declare a list as having a given size.
Such a language feature is know as Dependent Types, and F# doesn't have it. The short answer, therefore, is that this is not possible to do in a declarative fashion.
The easiest, and probably also most idiomatic, way, then, would be to define Code as a single-case Discriminated Union:
type Code = Code of string
In the module that defines Code, you'd also define a function that clients can use to create Code values:
let tryCreateCode candidate =
if System.String.IsNullOrWhiteSpace candidate
then None
else Some (Code candidate)
This function contains the run-time logic that prevents clients from creating empty Code values:
> tryCreateCode "foo";;
val it : Code option = Some (Code "foo")
> tryCreateCode "";;
val it : Code option = None
> tryCreateCode " ";;
val it : Code option = None
What prevents a client from creating an invalid Code value, then? For example, wouldn't a client be able to circumvent the tryCreateCode function and simply write Code ""?
This is where signature files come in. You create a signature file (.fsi), and in that declare types and functions like this:
type Code
val tryCreateCode : string -> Code option
Here, the Code type is declared, but its 'constructor' isn't. This means that you can't directly create values of this types. This, for example, doesn't compile:
Code ""
The error given is:
error FS0039: The value, constructor, namespace or type 'Code' is not defined
The only way to create a Code value is to use the tryCreateCode function.
As given here, you can no longer access the underlying string value of Code, unless you also provide a function for that:
let toString (Code x) = x
and declare it in the same .fsi file as above:
val toString : Code -> string
That may look like a lot of work, but is really only six lines of code, and three lines of type declaration (in the .fsi file).
Unfortunately there isn't convenient syntax for declaring a restricted subset of types but I would leverage active patterns to do this. As you rightly say, you can make a type and check it's validity when you construct it:
/// String type which can't be null or whitespace
type FullString (string) =
let string =
match (System.String.IsNullOrWhiteSpace string) with
|true -> invalidArg "string" "string cannot be null or whitespace"
|false -> string
member this.String = string
Now, constructing this type naively may throw runtime exceptions and we don't want that! So let's use active patterns:
let (|FullStr|WhitespaceStr|NullStr|) (str : string) =
match str with
|null -> NullStr
|str when System.String.IsNullOrWhiteSpace str -> WhitespaceStr
|str -> FullStr(FullString(str))
Now we have something that we can use with pattern matching syntax to build our FullStrings. This function is safe at runtime because we only create a FullString if we're in the valid case.
You can use it like this:
let printString str =
match str with
|NullStr -> printfn "The string is null"
|WhitespaceStr -> printfn "The string is whitespace"
|FullStr fstr -> printfn "The string is %s" (fstr.String)

F# type declaration based on parameter passed

hey i want to generate a parametrized type in F#
if parameter is present then generate an array of float containing as many number of values as value of parameter
else single float value
i tried the code which is showing error
type val<'mult> =
|Some -> Arr[|1..mult|]
|None -> value
Sadly F# doesn't currently have dependent types. Also see this uservoice asking for pretty much the same thing you want.

F# operator overloading strange behavoir

Let's say that for some strange reason I want to have this function:
let (~-) (str:string) = 42
So I can do something like this and get 42 as result:
-"test"
val it : int = 42
Which is fine. But now when I do:
let a = 100
-a
I get:
error FS0001: This expression was expected to have type
string
but here has type
int
Any idea why is this happening?
When you define operators using let, the new definition hides all previous definition of the operator. So in your example, you are hiding the default implementation of the unary minus (which works for numbers) and replacing it with a new operator that only works on strings.
It is not easy to re-define overloaded operators on built-in types. If you need that, it is probably better idea to avoid using operators (just use a function). However, if you want to provide an overloaded operator for a custom type, you can do this by adding operator as a static member:
type MinusString(s:string) =
member x.Value = s
/// Provide unary minus for MinusString values
static member (~-) (ms:MinusString) =
MinusString("-" + ms.Value)
-(MinusString "hi") // Returns "-hi"
If you really want to redefine built-in operator like unary minus and make it work on string, then there is actually a way to do this using a trick described in earlier SO answers. However, I would only use this if you have a good reason.
Simply, you overwrote the minus operator with one that takes a string and returns an int, then tried to apply it to an int, which it can't do anymore.

Using System.String.Split from F#

I would like to use the .NET CLR version of String.Split in F#. Specifically I would like to use this code:
let main argv =
let s = "Now is the time for FOO good men to come to the aide of their country"
let sepAry = [|"FOO"; "BAR"|]
let z1 = s.Split sepAry
0 // return an integer exit code
This fails to compile however, due to the fact (I believe) that the version of Split in F# is implemented differently than the one in .Net 4.5.
The version from .NET that I would like is:
Split(String[], StringSplitOptions) Returns a string array that contains the substrings in this string that are delimited by elements of a specified string array. A parameter specifies whether to return empty array elements.
I understand that I am getting the F# version of Split, which formerly resided in the PowerPack and that is why the implementation differs from the CLR version.
What is the best way to get what I want? Is it possible to override the F# version of Split and use the .Net version? Is it possible to extend the F# version and if so, how?
The overload you want to use expects a second argument.
let z1 = s.Split (sepAry, System.StringSplitOptions.None)
It's not an “F# version of Split”, it's exactly that Split you see in C#.
2 things are the problem here:
For .NET BCL you need to specify (), because the parameters are declared in different way using tuples (See http://msdn.microsoft.com/en-us/library/dd483468.aspx)
Only the char[] overload exists without StringSplitOptions. If you want to use a string array, you also need to specify StringSplitOptions.
You could create your own F# overload method, that provides a default for the stringsplitoptions.
Kirelagin is right, the Split method on String your trying to use doesn't exist, it's only available for char arrays with no secondary argument. You have to resort to this version: http://msdn.microsoft.com/en-us/library/tabh47cf.aspx. Also you have to use parentheses around your arguments when calling none-f# .NET apis because the arguments in C# are defined as a tuple.
You could of cause define your own extension-method on String, this way you don't have to specify None all the time if that is your expected default behavior
type System.String with
member x.Split(separator : (string [])) = x.Split(separator, System.StringSplitOptions.None)

Point-free style with objects/records in F#

I'm getting stymied by the way "dot notation" works with objects and records when trying to program in a point-free functional style (which I think is a great, concise way to use a functional language that curries by default).
Is there an operator or function I'm missing that lets me do something like:
(.) object method instead of object.method?
(From what I was reading about the new ? operator, I think it works like this. Except it requires definition and gets into the whole dynamic binding thing, which I don't think I need.)
In other words, can I apply a method to its object as an argument like I would apply a normal function to its argument?
Short answer: no.
Longer answer: you can of course create let-bound functions in a module that call a method on a given type... For example in the code
let l = [1;2;3]
let h1 = l.Head
let h2 = List.hd l
there is a sense in which "List.hd" is the version of what you want for ".Head on a list". Or locally, you can always do e.g.
let AnotherWay = (fun (l:list<_>) -> l.Head)
let h3 = AnotherWay l
But there is nothing general, since there is no good way to 'name' an arbitrary instance method on a given type; 'AnotherWay' shows a way to "make a function out of the 'Head' property on a 'list<_>' object", but you need such boilerplate for every instance method you want to treat as a first-class function value.
I have suggested creating a language construct to generalize this:
With regards to language design
suggestions, what if
SomeType..Foo optArgs // note *two* dots
meant
fun (x : SomeType) -> x.Foo optArgs
?
In which case you could write
list<_>..Head
as a way to 'functionize' this instance property, but if we ever do anything in that arena in F#, it would be post-VS2010.
If I understand your question correctly, the answer is: no you can't. Dot (.) is not an operator in F#, it is built into the language, so can't be used as function.

Resources