erlang - startup script - erlang

To start my program I do the next sequence:
$ erl
> c(module1).
> c(module2).
> c(modulen).
modulen:start().
Is there any possibility to create script that allow me to launch my program ?

You could use a loader script that takes care of starting your application in an OTP fashion:
-module(XYZ_app).
-export([start/0]).
start() ->
application:start(inets),
application:start(XYZ).
You launch that script through a shell script. Beware of using escript if you plan on building daemons running at the OS boot time as they are tricky.
#!/bin/bash
erl -boot start_sasl -s XYZ_app start
Of course you need your XYZ.app file (just an example):
{application, tinycouch,
[{description, "tinycouch"},
{vsn, "0.1"},
{modules, [
tinycouch, tinycouch_app, tinycouch_sup,
tinycouch_server, tinycouch_logger_h, tinycouch_utils,
tinycouch_db, mod_tinycouch
]},
{registered, [tinycouch
,tinycouch_server
,tinycouch_sup
]},
{applications, [kernel, stdlib, sasl, inets]},
{env, []},
%% Application Start point
{mod, {tinycouch_sup, []}}]}.
... and all your .erl files must have been compiled.
Note that if you intend to distribute your application (e.g. Debian repository etc), you probably should consider having a make file to compile and install your app.
As a final note: you could also go with a boot file (the ultimate OTP way) but I find those very constraining: a boot file ties your application to specific version release of Erlang (and other dependent applications). Your application might be able to run in various Erlang releases but you will need to have a separate build/release process for each "platform release" you intend to ship for.

You can compile the modules with erlc
erlc module1 module2 module3
You can also create a script to run you program
#!/usr/bin/escript
main(_) ->
modulen:start().
Then in the console:
chmod +x start.erl
./start.erl

Two ways
precompile your code
$ erlc module1.erl
$ erl -s module1 funcname arg1 arg2 ....
Or use escript
#!/usr/bin/env escript
main() ->
module1:fun(...)
escript is a scripting interface to Erlang

You can use erl -make directly, as it assumes all *.erl files should be compiled to *.beam, and skip it if they haven't been changed since last compile. Check out the make module for what you can put in your Emakefile to change certain behavior.
Using plain Makefile to invoke this compile strategy also gives other users a familiar build-procedure.
Having a bootstrap start function as jldupont suggests is a nice way to start up your development environment. It is even sufficiently fine for using in production to some point.
The next step is to use full OTP (*.rel) release files and generate boot scripts that starts all the applications in the order the *.app specify dependencies on each other.

In the home directory, create file
.erlang
in that file write
compile:file(/path-to/module1).
compile:file(/path-to/module2).
compile:file(/edit-real-path-to/modulen). % etcetera; do not use c(module) inside this file!
then, if you need add (inside .erlang):
module1:start(). % etc
When you run erl (in the shell), the content of the .erlang (provided this file is in the home dir) will be executed at start (of the interpreter-erlang-VM you launch).
You can create .erlang file in some other (some 'current') directory, then, if you run erl (erlang interpreter) in that directory, that another .erlang will override the content of that .erlang in the home dir (of that which is like /home/your-user-name/.erlang ).
It is good idea to write inside of .erlang some reminder, like
io:format(".erlang loaded-compiled module1!\n"). %etc
(as not to forget about that code which otherwise will be executed silently !)
(also, you can check, for this case, that e.g. module1 is indeed compiled and loaded after start, this or some similar way:
AllLoaded = code:all_loaded().
lists:filter(fun({Module,_})-> Module =:= module1 end, AllLoaded).
the answer should be like:
[{module1,"/home/your-user-name/(path-to-your-code)/module1.beam"}]
)

Check out Sinan and Faxien: http://www.erlware.org

Related

start erlang otp application from makefile

I've created an erlang application where I can use application:start(Name) to successfully start the application.
I tried to create a makefile step that uses rebar to compile, and then manually start the application. But it doesn't seem to work. Here's what I have now:
all: compile start
compile:
./rebar compile
start:
erl -s application load shoutcast -s application start shoutcast
All this does is loads up an interactive erlang shell
Aplication:start(Name)
calls
Name:start/2
while the -s flag calls
Name:start() or Name:start([arg1, arg2, ...]).
So, I don't think you can successfully invoke Application in this way. Assuming you don't want to create a release and boot file, you could (I think) add a method to you application module, start/0
-module(shoutcast).
-behaviour(application).
%% Application callbacks
-export([start/2, stop/1]).
%% Allow for erl -s invocation
-export([start/0]).
... Snip ...
start() ->
application:start(shoutcast).
... Snip ...
Then within your makefile
erl -s shoutcast
I'm not sure if this violates a best practice, but it should work.
It could be better to keep useful things in common Makefile
https://github.com/virtan/erlang-makefile

How do I start applications by command line as a daemon?

This has been my current routine
sudo nohup erl -sname foo -pa ./ebin -run foo_supervisor shell -noshell -noinput &
where the shell function looks something like this
shell() ->
{ok, Pid} = supervisor:start_link({local,?MODULE}, ?MODULE, _Arg = []),
unlink(Pid).
If I don't unlink from shell it immediately stops for some reason. Is there a way I can just start my application like I would normally ie application:start(foo). Also what if I want to start sasl too? Also where could I learn more about making a self contained package using rebar?
Preface. About your unlink
In this other SO thread #filippo explains why you need the unlink when testing supervisors from the shell.
First. What you need is an Erlang application.
Reading from the doc:
In OTP, application denotes a
component implementing some specific
functionality, that can be started and
stopped as a unit, and which can be
re-used in other systems as well.
Details on how to implement an Erlang application are available here. The three main things you will need to do are:
Have a proper directory structure for your application
Write an application callback module implementing the Erlang application behaviour. That's where you will start your root supervisor
Provide an application resource file. This is where you tell the system - among other things - where to find your application callback module (look at the mod parameter).
Second. Starting SASL.
In the above application resource file, you can specify a list of applications you want to start before your application. You will add something like:
...
{applications, [kernel, stdlib, sasl]},
...
To tell it to start SASL.
Third. Rebar.
There's an introduction to Rebar here, which explains you how to use Rebar to help you in the above steps, to pack your brand new application into an Erlang release and how to start it.

Run erlang application without terminal depending

I have erlang application: *.app file and some *.erl files. I compile all of them. In terminal i start erl and there application:start(my_application)., all ok, but if i closed terminal application close too. How can i run application without terminal depending?
Thank you.
You likely want to use the -noshell option to erl. The syntax is
erl -noshell -s Module Function Arguments
So in your case, this might be
erl -noshell -s application start my_application
This should allow you (for example if you are on Unix/Linux) to start your application as a background process and leave it running.
One useful variation is to also call the stop/0 function of the init module so that the Erlang environment will stop when it has finished running your function. This comes in handy if you want to run a simple one-use function and pipe the output to some other process.
So, for example, to pipe to more you could do
erl -noshell -s mymodule myfunction -s init stop | more
Finally, you might also be able to use the escript command to run your Erlang code as scripts rather than compiled code if it makes sense for your situation.
Hope that helps.
The proper way to handle this situation, is building a release containing your app and running the system as so called embedded one.
This release is going to be completely independent (it will hold erts and all the libs like, kernel, std, mnesia etc.).
On start, the new process will not be connected to shell process.
It will be OS process, so you can attach to it with pipes. All script are included in OTP.
Here is some info: http://www.erlang.org/doc/design_principles/release_structure.html
It may seem to be complicated, but tools like rebar do everything for you.

How to compile an Erlang application into executable binary and run it?

Now I am learning Erlang and I have a question about kind of running and testing Erlang applications.
We have some views of running and testing Erlang programs:
We can run Erlang shell and test in there our function.
We can compile some files with our Erlang code, than create .app file, and then again run Erlang shell and call application:start(AppName).
My question: Can we make binary executable file from Erlang code, Like C code? How can I run programmes without Erlang shell, in a way that I can run program, input something command and after that calls Erlang functions for this command?
For example I have a module (test.erl) with three functions:
foo1() -> ...
foo2() -> ...
foo3() -> ...
Then I want to run the programme in terminal and input -a flag to call function foo1, -b flag for foo2 and so on.
Let me divide the answer into three parts:
1. Running Erlang Applications
As Erlang source code (.erl files) compiled to BEAM bytecode (.beam files) and then run on top of Erlang virtual machine (BEAM), so There is no option for creating a stand-alone binary without the need of the virtual machine. But there are ways for packing, building, porting, upgrading and running Erlang applications based on OTP which is its formal platform.
A. Command-line flags
Imagine we developed an application with foo name, now we can start it with a set of flags just like this:
$ erl \
-pa path/to/foo \
-s foo \
-sname foo_node \
-setcookie foo_secret \
-noshell -noinput > /path/to/foo.log &
-pa adds the specified directory to the path
-s starts the foo application
-sname makes it distributed with a short name
-setcookie sets a cookie for making a minimum level of security
-noshell starts erlang without shell
-noinput doesn't let to read any input from shell
Then we can stop it with following command:
$ erl \
-sname stop_foo_node \
-setcookie foo_secret \
-eval 'rpc:call(foo, foo_node, stop, []), init:stop()' \
-noshell -noinput > /path/to/foo.log &
-eval evaluates the given expressions
And also we can attach to the foo application shell with this command:
$ erl \
-sname debug_foo_node \
-setcookie foo_secret \
-rmesh foo_node
-rmesh makes a remote shell to given node
We can put above commands into a makefile or shell script for using them simply.
Also for finer grained control over the start-up process of the system we can use a boot script file and specify it with -boot flag. The boot file contains instructions on how to initiate the system, which modules and applications we are dependant on, and also contains functions to restart, reboot and stop the system. The process of creating and using boot script is well documented in Erlang documentation website.
B. Release tool
The other way that automates and integrates most of the works for us is reltool which is a standard and fully featured release management tool. We can specify our application version, boot script, dependencies, and so on in reltool config file and create a portable release. This is a sample structure of an Erlang/OTP application compatible with reltool:
├── deps
│ └── ibrowse
├── ebin
│ ├── foo.app
│ ├── foo_app.beam
│ └── foo_sup.beam
├── rebar.config
├── rel
│ ├── files
│ ├── foo
│ └── reltool.config
└── src
├── foo_app.erl
├── foo.app.src
└── foo_sup.erl
We can use Rebar which is an Erlang build tool for making it even simpler to create Erlang application and also releases. There is a detailed tutorial on how to use Rebar for such task.
2. Testing Erlang applications
There are two standard test frameworks for Erlang applications:
Eunit: It is a standard unit-testing framework of OTP which can test a function, a module, a process or even an application.
CommonTest: It is another standard test framework of OTP that provides structures for defining local or distributed test scenarios and manages to run, log and report the results.
It is a common practice to combine them together for both white-box and black-box testing. Also Rebar provides rebar eunit and rebar ct commands for automating their execution.
3. Passing command-line argument
Using init:get_argument/1 we can retrieve user defined flags to decide upon them as follows:
$ erl -foo foo1 foo2 -bar bar1
1> init:get_argument(foo).
{ok,[["foo1","foo2"]]}
2> init:get_argument(bar).
{ok,[["bar1"]]}
No, you can't make a binary. You can write a bash- or escript to automatically run the startup / test code.
You should also be checking out eunit which can automate a lot of the hassle of running automated unit tests.

Add Path to Erlang Search Path?

I recently installed Erlang RFC4627 (JSON-RPC) with the debian package. I ran the test server using:
sudo erl -pa ebin
and then at the prompt:
test_jsonrpc:start_httpd().
returned
ok
I tested with http://:5671/ and got the success messages.
When I try to run rabbitmq-http2 however, I get the errors that the readme says are caused by rfc4627's code not being on the erlang search path. How do I put it on the path. I saw something on Dave Thomas's blog which suggested putting the path in the file:
~/.erlang
This didn't seem to work for me (maybe I did it wrong?).
The code module is how you manipulate the path within an application.
The flags -pa that you used in starting the Erlang shell actually refer to a function in this module:
add_patha(Dir) -> true | {error, What}
You are right about the .erlang file in your home directory - it is run at start-up time of the shell and you can add in handy paths.
For an application you can start the shell with a batch file that calls something like this:
erl -pa ./ebin ../../lib/some/path/ebin
The flags behaviour of erl is described here.
For more sophisticated path management you need to get familiar with how OTP release management is done (but I suspect that is a while away for you yet).

Resources