Where is Erlang used and why? [closed] - erlang

As it currently stands, this question is not a good fit for our Q&A format. We expect answers to be supported by facts, references, or expertise, but this question will likely solicit debate, arguments, polling, or extended discussion. If you feel that this question can be improved and possibly reopened, visit the help center for guidance.
Closed 10 years ago.
I would like to know a list of the most common application/websites/solutions where Erlang is used, successfully or not.
Explaining why it is used into a specific solution instead of others programming languages would be very much appreciated, too.
Listing BAD Erlang case studies (cases in which Erlang is misused) it would be interesting, as well.

From Programming Erlang:
(source: google.com)
Many companies are using Erlang in their production systems:
• Amazon uses Erlang to implement SimpleDB, providing database services as a part
of the Amazon Elastic Compute Cloud (EC2).
• Yahoo! uses it in its social bookmarking service, Delicious, which has more than
5 million users and 150 million bookmarked URLs.
• Facebook uses Erlang to power the backend of its chat service, handling more than
100 million active users.
• WhatsApp uses Erlang to run messaging servers, achieving up to 2 million connected users per server.
• T-Mobile uses Erlang in its SMS and authentication systems.
• Motorola is using Erlang in call processing products in the public-safety industry.
• Ericsson uses Erlang in its support nodes, used in GPRS and 3G mobile networks
worldwide.
The most popular open source Erlang applications include the following:
• The 3D subdivision modeler Wings 3D, used to model and texture polygon
meshes.
• The Ejabberd system, which provides an Extensible Messaging and Presence Protocol
(XMPP) based instant messaging (IM) application server.
• The CouchDB “schema-less” document-oriented database, providing scalability
across multicore and multiserver clusters.
• The MochiWeb library that provides support for building lightweight HTTP servers.
It is used to power services such as MochiBot and MochiAds, which serve
dynamically generated content to millions of viewers daily.
• RabbitMQ, an AMQP messaging protocol implementation. AMQP is an emerging
standard for high-performance enterprise messaging.

ejabberd is one of the most well know erlang application and the one I learnt erlang with.
I think it's the one of most interesting project for learning erlang because it is really building on erlang's strength. (However some will argue that it's not OTP, but don't worry there's still a trove of great code inside...)
Why ?
An XMPP server (like ejabberd) can be seen as a high level router, routing messages between end users. Of course there are other features, but this is the most important aspect of an instant messaging server. It has to route many messages simultaneously, and handle many a lot of TCP/IP connections.
So we have 2 features:
handle many connections
route messages given some aspects of the message
These are examples where erlang shines.
handle many connections
It is very easy to build scalable non-blocking TCP/IP servers with erlang. In fact, it was designed to solve this problem.
And given it can spawn hundreds of thousand of processes (and not threads, it's a share-nothing approach, which is simpler to design), ejabberd is designed as a set of erlang processes (which can be distributed over several servers) :
client connection process
router process
chatroom process
server to server processes
All of them exchanging messages.
route messages given some aspects of the message
Another very lovable feature of erlang is pattern matching.
It is used throughout the language.
For instance, in the following :
access(moderator, _Config)-> rw;
access(participant, _Config)-> rw;
access(visitor, #config{type="public"})-> r;
access(visitor, #config{type="public_rw"})-> rw;
access(_User,_Config)-> none.
That's 5 different versions of the access function.
Erlang will select the most appropriate version given the arguments received. (Config is a structure of type #config which has a type attribute).
That means it is very easy and much clearer than chaining if/else or switch/case to make business rules.
To wrap up
Writing scalable servers, that's the whole point of erlang. Everything is designed it making this easy. On the two previous features, I'd add :
hot code upgrade
mnesia, distributed relational database (included in the base distribution)
mochiweb, on which most http erlang servers are built on
binary support (decoding and encoding binary protocol easy as ever)
a great community with great open source projects (ejabberd, couchdb but also webmachine, riak and a slew of library very easy to embed)
Fewer LOCs
There is also this article from Richard Jones. He rewrote an application from C++ to erlang: 75% fewer lines in erlang.

The list of most common applications for Erlang as been covered (CouchDb, ejabberd, RabbitMQ etc) but I would like to contribute the following.
The reason why it is used in these applications comes from the core strength of Erlang: managing application availability.
Erlang was built from ground up for the telco environment requiring that systems meet at least 5x9's availability (99.999% yearly up-time). This figure doesn't leave much room for downtime during a year! For this reason primarily, Erlang comes loaded with the following features (non-exhaustive):
Horizontal scalability (ability to distribute jobs across machine boundaries easily through seamless intra & inter machine communications). The built-in database (Mnesia) is also distributed by nature.
Vertical scalability (ability to distribute jobs across processing resources on the same machine): SMP is handled natively.
Code Hot-Swapping: the ability to update/upgrade code live during operations
Asynchronous: the real world is async so Erlang was built to account for this basic nature. One feature that contributes to this requirement: Erlang's "free" processes (>32000 can run concurrently).
Supervision: many different strategies for process supervision with restart strategies, thresholds etc. Helps recover from corner-cases/overloading more easily whilst still maintaining traces of the problems for later trouble-shooting, post-mortem analysis etc.
Resource Management: scheduling strategies, resource monitoring etc. Note that the default process scheduler operates with O(1) scaling.
Live debugging: the ability to "log" into live nodes at will helps trouble-shooting activities. Debugging can be undertaken live with full access to any process' running state. Also the built-in error reporting tools are very useful (but sometimes somewhat awkward to use).
Of course I could talk about its functional roots but this aspect is somewhat orthogonal to the main goal (high availability). The main component of the functional nature which contributes generously to the target goal is, IMO: "share nothing". This characteristic helps contain "side effects" and reduce the need for costly synchronization mechanisms.
I guess all these characteristics help extending a case for using Erlang in business critical applications.
One thing Erlang isn't really good at: processing big blocks of data.

We built a betting exchange (aka prediction market) using Erlang. We chose Erlang over some of the more traditional financial languages (C++, Java etc) because of the built-in concurrency. Markets function very similarly to telephony exchanges. Our CTO gave a talk on our use of Erlang at CTO talk.
We also use CouchDB and RabbitMQ as part of our stack.

Erlang comes from Ericsson, and is used within some of their telecoms systems.
Outside telecoms, CouchDb (a document-oriented database) is possibly the best known Erlang application so far.
Why Erlang ? From the overview (worth reading in full):
The document, view, security and
replication models, the special
purpose query language, the efficient
and robust disk layout and the
concurrent and reliable nature of the
Erlang platform are all carefully
integrated for a reliable and
efficient system.

I came across this is in the process of writing up a report: Erlang in Acoustic Ray Tracing.
It's an experience report on a research group's attempt to use Erlang for Acoustic Ray Tracing. They found that while it was easier to write the program, less buggy, etc. It scaled worse, and performed 10x slower than a comparable C program. So one spot where it may not be well suited is CPU intensive scenarios.
Do note though, that the people wrote the paper were in the stages of first learning Erlang, and may not have known the proper development procedures for CPU intensive Erlang.

Apparently, Yahoo used Erlang to make something it calls Harvester. Article about it here: http://www.ddj.com/architect/220600332

What is erlang good for?
http://beebole.com/en/blog/erlang/why-erlang/
http://www.aquabu.com/2008/2/15/erlang-pragmatic-studio-day-3-notes
http://www.reddit.com/r/programming/comments/9q0lr/erlang_and_highfrequency_trading/
(jerf's answer)
It's important to realize that Erlang's 4 parts: the language itself, the VMs(BEAM, hipe) standard libs (plus modules on github, CEAN, etc.) and development environment are being steadily updated / expanded/improved. For example, i remember reading that the floating point performance improved when Wings3d's author realized it needed to improve (I can't find a source for this). And this guy just wrote about it:
http://marian-dan.com/wordpress/?p=324
A couple years ago, Tim Bray's Wide Finder publicity and all the folks starting to do web app frameworks and HTTP servers lead (at least in part) to improved regex and binaries handling. And there's all the work integrating HiPE and SMP, the dialyzer project, multiple unit testing and build libs springing up, ..
So its sweet spot is expanding, The difficult thing is that the official docs can't keep up very well, and the mailing list and erlang blogosphere volume are growing quickly

We are using Erlang to provide the back-end muscle power for our really real-time browser-based multi-player game Pixza. We don't use Flash or any other third-party plugins, though the game is real-time multi-player. We use pure JS and COMET techniques instead. And Erlang supports the "really realtimeliness" of Pixza.

I'm working for wooga, a social game company and we use Erlang for some of our game backends (basically http apis for millions of daily users) and auxiliary services like ios push notification provider, payment etc.
I think it really shines in network related tasks and it makes it kind of straight forward to structure and implement simple and complex network services alike in it. Distribution, fault tolerance and performance are easy to achieve because Erlang already has some of the key ingredients built in and they are being used for a long time in critical production infrastructure. So its not like "the new hip technology thing 0.0.2 alpha".
I know that other game companies use Erlang as well. You should be able to find presentations on slideshare about that.

Erlang draws its strength from being a functional language with no shared memory. Hence IMO, Erlang won't be suitable for applications that require in place memory manipulations. Image editing for example.

Related

What is the maximum (practical) number of nodes in an Erlang system

I wish to create a platform as a service in the financial markets using Erlang/Elixir. I will provide AWS lambda-style functions in financial markets, but rather than being accessible via web/rest/http, I plan to distribute my own ARM-based hardware terminals to clients (Nvidia Jetson TX2-based or similar, so decent hardware). They will access the functions from these terminals. I want said terminals to be full nodes in the system. So they will use the actor model to message pass to my central servers, and indeed, the terminals might message pass amongst each other if terminal users decide to put their own functions online.
Is this a viable model? Could I run 1000 terminals like this? 100 000? What kinds of limitations might I start bumping into? Is Erlang message routing scalable enough to imagine such a network still being performant if we had soft-real time financial markets streaming data flowing around? (mostly from central servers to terminals, but a good proportion possible moving directly around from terminal to terminal). We could have a system where up to 100k or more different "subscription" data channel processes were available, many of them taking input and producing output every second.
Basically I'd like a canonical guide to the scalability capabilities of an Erlang system something like the above. Ideally I'd also like some guide to the security implications of such a system ie. would global routing tables or any other part of the system be compromisable by a rogue terminal user, or can edge nodes be partly "sealed off" from sensitive parts of the rest of the Erlang network?
Note that I'd want to make heavy use of ports/NIFs for high-compute processes.
I would not pursue this avenue for various reasons, all of which hark back to the sort of systems that Erlang's distribution mechanism was developed for - a set of boards on a passive backplane: "free" local bandwidth and the whole machine sits in the same security domain. The Erlang distribution protocol is probably too chatty to work well on widely spread and large networks, and it is certainly too insecure. Unless you want nodes to be able to execute :os.cmd("rm -rf /") on each other, of course.
Use the Erlang distribution protocol in your central system to your heart's content, and have these terminals talk something that's data-only-over-SSL to that system and each other. On top of that, you can quite simply build a sort of overlay network to do whatever you want.
I recommend read this carefully and i recommend divide your service to little Micro-Services too.
Another benchmark is Investigating the Scalability Limits of
Distributed Erlang.
In the Joe Armstorng's book programming Erlang, he said:
"A few years ago, when I had my research hat on, I was working with PlanetLab. I had access to the PlanetLab a network, so I installed empty Erlang servers on all the PlanetLab machines (about 450 of them).
I didn’t really know what I would do with the machines, so I just set up the server infrastructure to do something later."
Do not use External ports, use internal drivers which are written in C or C++ instead.
You will find a lot of information regarding erlang Architectures is this answer: How scalable is distributed Erlang?
Short answer is, there is a pratical limitation of nodes in a cluster, but this limitation can be breach with federations fairly easily.
EDIT 1/ Further more I would recommend to read this book : Designing for scalability with Erlang/OTP

What is your experience with Nitrogen on Erlang?

I've been checking out the Nitrogen Project which is supposed to be the most mature web development framework for Erlang.
Erlang, as a language, is extremely impressive. However, with regards to Nitrogen, what I am not too keen about is using Erlang's rather uncommon syntax (unless you're native in PROLOG) to build UIs.
What is your experience with it as opposed to other mainstream web frameworks such as Django or Rails?
I've done very little with Nitrogen so far, but I've been monitoring the mailing list for months, so I think I have something useful to say about it.
To your concern about the syntax of Erlang and the Nitrogen framework, I'd respond that that sounds like a pure case of unfamiliarity, rather than unsuitability. Objectively, HTML is not a beautiful language, and it has plenty of quirks. You're used to this now, so it doesn't seem so bad. Give Nitrogen/Erlang a chance and you may find that you get used to it soon enough, too.
To your question about comparison to other languages and frameworks, I'd say the biggest difference is that with Nitrogen, the entire web site is being served directly by the Erlang runtime. Ruby on Rails has such a mode, but it's intended only for testing. Many other frameworks don't even offer the option of running everything within a single long-running process.
Running the entire web application and its underlying infrastructure within a single long-running process has significant implications on how the site runs:
With Apache, each child gets killed off every N connections, where N=500 or so, and you can't say whether a given child will always handle all of a given client's requests. Because HTTP is stateless but web apps almost always require some client state, an Apache child must rebuild its view of client state as part of handling a new connection. By default, this means going back to disk for persistent data stored about that client. There are alternatives like memcached, but these aren't built into the core of a LAMP type stack. With Erlang, nothing is killed off periodically, and Erlang offers standard facilities like Mnesia which provide disk-backed in-memory DBs.
Incidentally, if you're familiar with nginx, it's built on the same principles as Erlang, and it's fast for the same reason. The main difference between nginx and an Erlang instance running a web server is that nginx isn't a programming environment, so it still has to delegate a lot of processing to outside code. That means it shares the same IPC and persistent state problems as Apache.
Because the runtime stays up continuously and is a fully-functional programming environment, you can probably build more parts of your system in Erlang than with a lashed-together LAMP type stack. This magnifies the above benefits. The various parts of your system can coordinate via message passing and Mnesia instead of heavyweight IPC and MySQL, and all the pieces stay up and running continually, leading to less time-consuming state reconstruction.
A dozen or so Apache children all accessing the persistent client state data store is a lock-based hairball. The frameworks all handle locking and such for you transparently, but what they can't hide is the time it takes to do all this correctly.
Erlang is an impure functional language, which implies but does not require data purity; it is also built with multiprocessing in mind, going clear down to the core of the runtime design. These two facts mean you're less likely to spend time waiting on locks in an Erlang based server than one naively built on one of the other frameworks. It is certainly possible to optimize away lock delays in the other systems, but is that really what you want to be doing? Do you want to be on the thousandth team that has to learn how to optimize its web stack after the service becomes popular, or would you rather leave it all up to the tooling so you can spend your time doing something no one else has done yet?
I, too, was once concerned about clunky Erlang syntax. I've built a couple of tools to alleviate its annoyances for everyday web programming, and perhaps you will find one or both of them helpful:
ErlyDTL is an Erlang implementation of the Django Template Language; it's not available in Nitrogen, but it is available in other frameworks, such as Zotonic, Erlang Web, BeepBeep, and Chicago Boss
Chicago Boss is a full-stack Erlang framework that does a lot of code generation so that you can access data fields with function calls instead of Erlang's rather verbose record syntax (e.g. Person:name() instead of Person#person.name)
Note that Nitrogen does not include a database layer, so it's not really comparable to Rails or Django. For a comprehensive comparison of the database-driven frameworks, check out my answer to this StackOverflow question:
https://stackoverflow.com/questions/1822518/current-state-of-erlang-web-development-frameworks-template-languages/2898271#2898271
I would check out Webmachine if I were you. It is quite simple, fast, and leaves the interface up to you.
Erlang Web should also be considered mature. It is an MVC framework, whereas Nitrogen is more event based. It's a matter of preference.
I haven't used the other tools mentioned here except Webmachine, which I think it's a wonderful tool, but it is not a web framework like the others. It is as HTTP processor, and is ideal for building a restful interfaces.
I would also suggest you give the Erlang syntax a chance. Erlang is one of my favourite languages to use.

How to push Erlang to my workplace

I think Erlang is very well suited for server systems developed in my workplace (currently developed in Java). I am a bit skeptical how this would be accepted both by developers (who have no idea about functional or Erlang) and by managers.
Any ideas on how to approach the issue? I am thinking about some hybrid system, where the hardcore highly reliable infra uses Elrang, and app specific stuff developed in Java (as nodes?)
There are a few approaches, and neither have any guarantees to actually work
Implement something substantial in a short time frame, perhaps using your own time. Don't tell anyone until you have something to display that works. Unless you have a colleague in on it.
Pull up lots of Erlang projects that are good demonstrations of the features you want. Present it to your managers and try to frame them about the risk in keeping using Java with this kind of technology available.
If the company you work for actually have a working code base in Java already, they're not likely to take you seriously when you suggest to rewrite it in another language.
The true test that you believe in Erlang being a much better choice: Quit and start up a competing company and bring the technology insight you have in your current industry. Your managers are really comparing a similar risk-scenario as you would do if you were to quit your job, and they are looking for the same assuring facts for success as you would do, to consider leaving a "safe" paycheck.
As for how to integrate, check out the jinterface application in Erlang. It allows Java code to send messages to Erlang nodes, and it allows Java to expose mailboxes to the Erlang nodes as if there were Erlang processes.
It's all about ROI (Return On Investment) to a manager: a manager will be concerned about performance (of the company). In order to appeal to his business nature, you'll have to make a case for it using dollar$ (or whatever appropriate currency).
Beware that undertaking a "skunkwork" project on the side to "prove" your solution based on Erlang might backfire: "so you had time to play with Erlang, why didn't you spend the time on the project then?" (Of course, not all managers/companies would think this way).
You have to take into account the whole proposal e.g. impact on the team, skills to be developed etc. It's all about money.
If I have an advice for you: start small, plant a seed, nurture it and watch it grow.
A wise man once said to me:
"It's not about technology, it's about
the product & market".
Start by not targetting a rewrite but using erlang for a new feature/project. Rewrites can be expensive and taking a chance on erlang for something that is already a time consuming and costly undertaking is a hard sell. But if there is a new piece that could be done in erlang and java, you stand a better chance. The project will be small enough hopefully that you can discover early if erlang is a good fit and adapt accordingly. And when erlang proves itself in that project you will have better data to make your case with.
We're introducing RabbitMQ into our infrastructure, which currently runs a combination of C++, Java and Python applications. I'm not specifically intending to move the team towards Erlang, but if I were, introducing a well-written third-party tool that just happens to use Erlang is a very good way to get the foot in the door.
One major caveat is that while Erlang is a wonderful language to learn, the surrounding technology (OTP in particular) has a huge learning curve and is extremely primitive in many ways (debugging, IDE's, etc.). It is getting better all the time, but reluctant converts will crucify you if you don't warn them about the pain of learning to program in a radically different environment. Even simple things like the lack of code-sense technology (E.g., type 'foo.' and the IDE tells you what methods you can call on foo) can leave a really bad taste in the mouth.

Examples of production Erlang deployments

I am currently learning Erlang
Can SO users give interesting examples of any of their Erlang application deployments?
I want to gain some insight into common Erlang uses past telecomms, and any problems or unexpected benefits Erlang brought during development/deployment.
I hope this will give some broader context and whet the whistle for myself and anyone else jumping into Erlang!
Thanks in advance!
Who uses Erlang for product development:
Bluetail/Alteon/Nortel (distributed,
fault tolerant email system, SSL
accelerator)
Cellpoint (Location-based Mobile
Services)
Corelatus (SS7 monitoring).
dqdp.net (in Latvian) (Web Services).
Facebook (Facebook chat backend)
Finnish Meteorological Institute
(Data acquisition and real-time
monitoring)
IDT corp. (Real-time least-cost
routing expert systems)
Klarna (Electronic payment systems)
Mobilearts (GSM and UMTS services)
Netkit Solutions (Network Equipment
Monitoring and Operations Support
Systems)
Process-one (Jabber Messaging)
Schlund + Partner (Messaging and
Interactive Voice Response services)
Quviq (Software Test Tool)
RabbitMQ (AMQP Enterprise Messaging)
T-Mobile (previously one2one)
(advanced call control services)
Telia (a telecomms operator)
Vail Systems (Interactive Voice
Response systems)
Wavenet (SS7 and IVR applications)
Our first application was a web/sms social network and I wrote a long paper on the subject which can be read here.
We've built a web app based on an Erlang backend.
Erlang is in charge of the business logic, the security and data store.
The browser communicates exclusively through JSON services with it and do the rendering.
It will be in beta soon, and to give you an idea of the app there is a video here
There are as well some resources here and here about what we learned along the way.
Get to know the the release tools erlang/OTP already provides.
Erlang bootscripts are wonderful for ensuring that all the running applications needed are present and of the correct version. Working within the OTP framework for releases will be much easier than trying to invent your own. Erlang has lots of tools for making sure deployments can be done both live and without breaking running services. The language and runtime are designed for this so they've done a lot of the heavy lifting for you. I've found the tools useful even for small "non-enterprise" apps and deployments.
Of course there's always applications like wings3D which is for 3D modelling. It's not exactly a "deployment", because these sorts of programs are used anywhere from individuals to teams of artists in their pipeline. There are other projects for things like simulation, but I'm not sure how many companies are publicly stating that they use Erlang. As for me, I'm planning to adopt it for my company for industrial automation.

What weaknesses can be found in using Erlang?

I am considering Erlang as a potential for my upcoming project. I need a "Highly scalable, highly reliable" (duh, what project doesn't?) web server to accept HTTP requests, but not really serve up HTML. We have thousands of distributed clients (other systems, not users) that will be submitting binary data to central cluster of servers for offline processing. Responses would be very short, success, fail, error code, minimal data. We want to use HTTP since it is our best chance of traversing firewalls.
Given this limited information about the project, can you provide any weaknesses that might pop up using a technology like Erlang? For instance, I understand Erlang's text processing capabilities might leave something to be desired.
You comments are appreciated.
Thanks.
This sounds like a perfect candidate for a language like Erlang. The scaling properties of the language are very good, but if you're worried about the data processing abilities, you shouldn't be. It's a very powerful language, with many libraries available for developers. It's an old language, and it's been heavily used/tested in the past, so everything you want to do has probably already been done to some degree.
Make sure you use erlang version R11B5 or newer! Earlier versions of erlang did not provide the ability to timeout tcp sends. This results in stalled or malicious clients being able to execute a DoS attack on your application by refusing to recv data you send them, thus locking up the sending process.
See issue OTP-6684 from R11B5's release notes.
With Erlang the scalability and reliability is there but from your project definition you don't outline what type of text processing you will need.
I think Erlang's main limitation might be finding experienced developers in your area. Do some research on the availability of Erlang architects and coders.
If you are going to teach yourself or have your developers learn it on the job keep in mind that it is a very different way of coding and that while the core documentation is good a lot of people do wish there were more examples. Of course the very active community easily makes up for that.
I understand Erlang's text processing
capabilities might leave something to
be desired.
The starling project already provides basic unicode support and there is a EEP (Erlang Enhancement Proposal) currently in draft, but going in to bring it into the mainstream of Erlang/OTP support.
I encountered some problems with Redis read performance from Erlang. Here is my question. I tend to think the reason is Erlang-written module, which has troubles while processing tons of strings during communication with Redis.

Resources