Help with Shift/Reduce conflict - Trying to model (X A)* (X B)* - parsing

Im trying to model the EBNF expression
("declare" "namespace" ";")* ("declare" "variable" ";")*
I have built up the yacc (Im using MPPG) grammar, which seems to represent this, but it fails to match my test expression.
The test case i'm trying to match is
declare variable;
The Token stream from the lexer is
KW_Declare
KW_Variable
Separator
The grammar parse says there is a "Shift/Reduce conflict, state 6 on KW_Declare". I have attempted to solve this with "%left PrologHeaderList PrologBodyList", but neither solution works.
Program : Prolog;
Prolog : PrologHeaderList PrologBodyList;
PrologHeaderList : /*EMPTY*/
| PrologHeaderList PrologHeader;
PrologHeader : KW_Declare KW_Namespace Separator;
PrologBodyList : /*EMPTY*/
| PrologBodyList PrologBody;
PrologBody : KW_Declare KW_Variable Separator;
KW_Declare KW_Namespace KW_Variable Separator are all tokens with values "declare", "naemsapce", "variable", ";".

It's been a long time since I've used anything yacc-like, but here are a couple of suggestions that may or may not help.
It seems that you need a 2-token lookahead in this situation. The parser gets to the last PrologHeader, and it has to decide whether the next construct is a PrologHeader or a PrologBody, and it can't tell that from the KW_Declare. If there's a directive to increase lookahead in this situation, it will probably solve the problem.
You could also introduce context into your actions: rather than define PrologHeaderList and PrologBodyList, define PrologRuleList and have the actions throw an error if a header appears after a body. Ugly, but sometimes you have to do it: what appears simple in a grammar may not be simple in the generated parser.
A hackish approach might be to combine the tokens: rather than KW_Declare and KW_Variable, have your lexer recognize the space and use KW_Declare_Variable. Since both are keywords, you're not going to run into namespace collision problems.

The grammar at the top is regular so IIRC you can plot it out as a DFA (or a NDA and convert it to a DFA) and then convert the DFA to a grammar. It's bean a while so I'll leave the work as an exercise for the reader.

Related

How to differentiate between a parser and lexer rule in the following?

Sometimes I get a bit confused between a lexing rule vs. a parsing rule, and there's been a nice thread on it here. For example in the following:
value
: string CAST_OPERATOR type
;
string
: S_QUOTE STRING_VALUE S_QUOTE
;
# <-- what is this?
type
: 'date' | 'string'
;
STRING_VALUE
: [a-zA-Z0-9-]+
;
CAST_OPERATOR
: '::'
;
For the type -- this is either the string (or character stream) date or string. Should that be a lexing rule or a parsing rule? I suppose I could break it down even more into:
type
: DATE_TYPE | STRING_TYPE
;
DATE_TYPE
: 'date'
;
STRING_TYPE
: 'string'
;
But still I'm not quite sure which of the above is preferable, and why it would be so. The first two rules -- value and string seem clear to me to be parsing rules -- and the last two rules -- STRING_VALUE and CAST_OPERATOR seem clear to me to be lexing rules (only by intuition though, I could not give a proper explanation). So why would the type be one way or the other?
Literally the only practical difference I've found is that a lexing rule can include a character class and a parsing rule cannot.
Update: I suppose another thing is a lexing rule is terminal, it won't provide any subdivision of parts. For example in the following we can break down $55 into $ and 55:
But if we set the cost as a lexing rule, it will not break it down any further:
So basically a lexing rule is atomic and terminal, whereas a parsing rule is more like a molecule that consists of various parts (atoms) that can be seen within it. Is that a good description/understanding of it?
Your "Update" is on the right track. That's a definite distinction.
You also need to understand the ANTLR pipeline. I.e. that the stream of characters is processed by the Lexer rules to produce a stream of tokens (atoms, in you analogy). It does not do that with recursive descent rule matching, but rather attempts to match you input against all of the Lexer rules. Where:
The rule that matches the longest sequence of input characters will "win"
In the event that multiple Lexer rules match the same length character sequence, then the rule that occurs first will "win"
Once you've got you stream of "atoms" (aka Tokens), then ANTLR uses the parser rules (recursively from the start rule) to try to match sequences of tokens.

How to parse dot operator in language syntax?

Let's say I'm writing a parser that parses the following syntax:
foo.bar().baz = 5;
The grammar rules look something like this:
program: one or more statement
statement: expression followed by ";"
expression: one of:
- identifier (\w+)
- number (\d+)
- func call: expression "(" ")"
- dot operator: expression "." identifier
Two expressions have a problem, the func call and the dot operator. This is because the expressions are recursive and look for another expression at the start, causing a stack overflow. I will focus on the dot operator for this quesition.
We face a similar problem with the plus operator. However, rather than using an expression you would do something like this to solve it (look for a "term" instead):
add operation: term "+" term
term: one of:
- number (\d+)
- "(" expression ")"
The term then includes everything except the add operation itself. To ensure that multiple plus operators can be chained together without using parenthesis, one would rather do:
add operation: term, one or more of ("+" followed by term)
I was thinking a similar solution could for for the dot operator or for function calls.
However, the dot operator works a little differently. We always evaluate from left-to-right and need to allow full expressions so that you can do function calls etc. in-between. With parenthesis, an example might be:
(foo.bar()).baz = 5;
Unfortunately, I do not want to require parenthesis. This would end up being the case if following the method used for the plus operator.
How could I go about implementing this?
Currently my parser never peeks ahead, but even if I do look ahead, it still seems tricky to accomplish.
The easy solution would be to use a bottom-up parser which doesn't drop into a bottomless pit on left recursion, but I suppose you have already rejected that solution.
I don't understand your objection to using a looping construct, though. Postfix modifiers like field lookup and function call are not really different from binary operators like addition (except, of course, for the fact that they will not need to claim an eventual right operand). Plus and minus intermingle freely, which you can parse with a repetition like:
additive: term ( '+' term | '-' term )*
Similarly, postfix modifiers can be easily parsed with something like:
postfixed: atom ( '.' ID | '(' opt-expr-list `)` )*
I'm using a form of extended BNF: parentheses group; | separates alternatives and binds less stringly than concatenation; and * means "zero or more repetitions" of the atom on its left.
Another postfix operator which falls into the same category is array/map subscripting ('[' expr ']'), although you might also have other postfix operators.
Note that like the additive syntax above, selecting the appropriate alternative does not require looking beyond the next token. It's hard to parse without being able to peek one token into the future. Fortunately, that's very little overhead.
One way could be for the dot operator to parse a non-dot expression, that is, a rule that is the same as expression but without the dot operator. This prevents recursion.
Then, when the non-dot expression has been parsed, check if a dot and an identifier follows. If this is not the case, we are done. If this is the case, wrap the current node up in a dot operation node. Then, keep track of the entire string text that has been parsed for this operation so far. Then revert everything back to before the operation was being parsed, and now re-parse a "custom expression", where the first directly-nested expression would really be trying to match the exact string that was parsed before rather than a real expression. Repeat until there are no more dot-identifier pairs (this should happen automatically by the new "custom expression").
This is messy, complicated and possibly slow, and I'm not entirely sure if it'll work but I'll try it out. I'd appreciate alternative solutions.

ANTLR Tries to Match an Expression That Wasn't Specified as an Option

I'm trying to understand how ANTLR grammars work and I've come across a situation where it behaves unexpectedly and I can't explain why or figure out how to fix it.
Here's the example:
root : title '\n' fields EOF;
title : STR;
fields : field_1 field_2;
field_1 : 'a' | 'b' | 'c';
field_2 : 'd' | 'e' | 'f';
STR : [a-z]+;
There are two parts:
A title that is a lowercase string with no special characters
A two character string representing a set of possible configurations
When I go to test the grammar, here's what happens: first I write the title and, on a new line, give the character for the first field. So far so good. The parse tree looks as I would expect up to this point.
When I add the next field is when the problem comes up. ANTLR decides to reinterpret the line as an instance of STR instead of a concatenation of the fields that I was expecting.
I do not understand why ANTLR tries to force an unrelated terminal expression when it wasn't specified as an option by the grammar. Shouldn't it know to only look for characters matching the field rules since it is descended from the fields node in the parse tree? What's going on here and how do I write my ANTLR grammars so they don't have this problem?
I've read that ANTLR tries to match the format greedily from the top of the grammar to the bottom, but this doesn't explain why this is happening because the STR terminal is the very last line in the file. If ANTLR gives special precedence to matching terminals, how do I format the grammar so that it interprets it properly? As far as I understand, regexes do not work for non-terminals so it seems that have to define it how it is now.
A note of clarification: this is just an example of a possible grammar that I'm trying to make work with the text format as is, so I'm not looking for answers like adding a space between the fields or changing the title to be uppercase.
What I didn't understand before is that there are two steps in generating a parser:
Scanning the input for a list of tokens using the lexer rules (uppercase statements) and then...
Constructing a parse tree using the parser rules (lowercase statements) and generated tokens
My problem was that there was no way for ANTLR to know I wanted that specific string to be interpreted differently when it was generating the tokens. To fix this problem, I wrote a new lexer rule for the fields string so that it would be identifiable as a token. The key was making the FIELDS rule appear before the STR rule because ANTLR checks them in the order they appear.
root : title FIELDS EOF;
title : STR;
FIELDS : [a-c] [d-f];
STR : [a-z]+;
Note: I had to bite the bullet and read the ANTLR Mega Tutorial to figure this out.

Lexer rule optional suffix not matching, when it should match

Using ANTLR 3, my lexer has rule
SELECT_ASSIGN:
'SELECT' WS+ IDENTIFIER WS+ 'ASSIGN' WS+ (('TO'|'USING') WS+)?
using this these match correctly
SELECT VAR1 ASSIGN TO
SELECT VAR1 ASSIGN USING
and this also matches
SELECT VAR1 ASSIGN FOO
However this does not match
SELECT VAR1 ASSIGN TWO
Whereas I have marked TO|USING as optional in the rule.
From generated Java code I see...
When lexer notices T of TWO, it goes to match('TO')
but since does not find O after T
then generates failure.... and returns all the way from the rule -- hence not matching it.
How do I get my lexer rule to match, when input has word with chars starting with suffixed optional part of the rule
Basically I want my rule to match this also (beside what it already matches - as lised at the start):
SELECT VAR1 ASSIGN TWO
Kindly suggest how I approach/resolve this situation.
NOTE:
Such rules are recommended in the parser - But I have this in lexer - because I do not want to parse the entire input by the parser, and want to parse only content of interest. So using such rules in lexer, I locate sections which I really want to parse by the parser.
UPDATE 1
I could circumvent this problem by making 2 rules, like so:
SELECT_ASSIGN_USING_TO
: tok='SELECT' WS+ name=IDENTIFIER WS+ 'ASSIGN' WS+ ('USING'|'TO')
SELECT_ASSIGN
: tok='SELECT' WS+ name=IDENTIFIER WS+ 'ASSIGN'
But is it possible to do the desired in one lexer rule?
An approach to get this in one rule, suggested by my senior - use syntactic predicate
SELECT_ASSIGN
: tok='SELECT' WS+ name=IDENTIFIER WS+ 'ASSIGN'
(
(WS+ ('TO'|'USING') WS+)=> (WS+ ('TO'|'USING') WS+)
| (WS+)
)
Tokens match a complete char sequence or none. It cannot match partially and the grammar rule determines which exactly. You cannot expect a rule for TO to match TWO. If you want TWO to match too you have to add it to your lexer rule.
A few notes here:
The solution your "senior" gave you makes no sense at all. A
syntactic predicate is a kinda lookahead to guide the parser in case
of ambiquities. There are no ambiquities involved here.
Writing
the entire SELECT_ASSIGN rule as a lexer rule is very uncommon and
not flexible. A lexer rule should not be used for entire sentences,
but only for a small set of characters to find tokens to assign them
a type (usually elementary structures of a language like string,
number, comment etc.).
ANTLR3 is totally outdated and I wonder why this is still used in your class. ANTLR4 is out since 5 years and should be the choice for any new project.

How to match any symbol in ANTLR parser (not lexer)?

How to match any symbol in ANTLR parser (not lexer)? Where is the complete language description for ANTLR4 parsers?
UPDATE
Is the answer is "impossible"?
You first need to understand the roles of each part in parsing:
The lexer: this is the object that tokenizes your input string. Tokenizing means to convert a stream of input characters to an abstract token symbol (usually just a number).
The parser: this is the object that only works with tokens to determine the structure of a language. A language (written as one or more grammar files) defines the token combinations that are valid.
As you can see, the parser doesn't even know what a letter is. It only knows tokens. So your question is already wrong.
Having said that it would probably help to know why you want to skip individual input letters in your parser. Looks like your base concept needs adjustments.
It depends what you mean by "symbol". To match any token inside a parser rule, use the . (DOT) meta char. If you're trying to match any character inside a parser rule, then you're out of luck, there is a strict separation between parser- and lexer rules in ANTLR. It is not possible to match any character inside a parser rule.
It is possible, but only if you have such a basic grammar that the reason to use ANTlr is negated anyway.
If you had the grammar:
text : ANY_CHAR* ;
ANY_CHAR : . ;
it would do what you (seem to) want.
However, as many have pointed out, this would be a pretty strange thing to do. The purpose of the lexer is to identify different tokens that can be strung together in the parser to form a grammar, so your lexer can either identify the specific string "JSTL/EL" as a token, or [A-Z]'/EL', [A-Z]'/'[A-Z][A-Z], etc - depending on what you need.
The parser is then used to define the grammar, so:
phrase : CHAR* jstl CHAR* ;
jstl : JSTL SLASH QUALIFIER ;
JSTL : 'JSTL' ;
SLASH : '/'
QUALIFIER : [A-Z][A-Z] ;
CHAR : . ;
would accept "blah blah JSTL/EL..." as input, but not "blah blah EL/JSTL...".
I'd recommend looking at The Definitive ANTlr 4 Reference, in particular the section on "Islands in the stream" and the Grammar Reference (Ch 15) that specifically deals with Unicode.

Resources