Custom robotics for building an auto CD-loading arm - robotics

Where would you recommend that I find a company to develop or buy a CD/DVD loading arm similar to: http://www.dextimus.com/
Preferably programmable via USB but if I only can get one with a serial interface that would be fine. Drivers dont matter - I can interface directly with the unit as my situation is very unique.

If you have some experience with electronics, you can give it a shot and build it yourself, like this or this.
I should add that the schematics and the source code are included, and in more details in the first project.

I suppose I might just shorten this by giving a list of resources first:
http://www.embedinc.com/ I trust this company to do good work. Expensive (actually, they are reasonably priced in the design community, but would be considered expensive by most hobbyists and individuals). Not great at people skills, but very very very good at what they do.
You should check out the various microcontroller communities and forums for hobbyists and professionals that can do this. Search for microchip, atmel, msp430, arm, powerpc, etc.
Sparkfun is a supplier to the electronics community - they have great forums where you can post your request, and you'll find people who might do it for fun with only the cost of materials. Might take longer, might not be as 'professional' or well packaged and delivered, but it might be your best low cost option.
There are many electronic design companies that could do this (for instance, I can do this sort of thing).
But there are many questions you haven't answered (and may not have researched) that could prevent success:
Is this patented?
What CD loading/unloading methods are not patented, are out of patent, or otherwise available?
What is your design goal - a one off just for you, or a device that can be built in the hundreds for industrial use, or a device meant for general office workers/consumers that is built in the millions?
Do you realize that this design qould surely cost mroe than simply buying one, if one is all you need?
As an example, assuming you don't need the nice enclosure and don't mind a 'prototype' look, just the mechanicals, electronics, and firmware design (no software on the PC) would likely be 100-250 billable hours for a design firm. At a cheap $90/hr, that's $9k to nearly $25k for one prototype. Add PC software and the nice enclosure, etc and you'll double that.
If you can find a local 'Make' group (techshop, GoTech, or similar) then you might be able to find a hobbyist that is willing to play with this idea for the cost of materials.
But if you define what your goal is, and give us an idea of your resources you may find a better answer.
-Adam

You can create a very nice simple solution using radio control servos. They come in many sizes, but even the small ones have enough torque to move a big arm to move a cd.
The real bonus with servos is that they normally have 180 degrees of rotation and internally have a variable resistor (rheostat) for positioning feedback. Positioning accuracy is normally within 1 degree of rotation which should be fine for a cd loader.
For picking up the CDs, nothing will beat a vacuum. I recommend a small battery powered vacuum cleaner. Funnel the suction into a 1/4 inch pipe. At the other end of the pipe a one inch diameter cup should provide more than enough lift from the small amount of suction.
As for the pile of blank CDs to be burnt, I would advise in moving the pile up rather than an arm down to it. probably having the top blank cd about 1/4 inch higher than the cd tray - By doing this, the arm only needs to rotate in one axis and the vacuum should be enough to suck the cd back out of the tray.
Now, for the electronics. For the servo control I suggest an rs232 serial servo controller. I've used the one from http://www.basicx.com/Products/servo/servo8t.htm as it also gives back torque information from the current draw.
For the low sample rate digital i/o, i suggest (for windows) inpout32.dll which is a dll to give you direct access to the bits of a parallel port. This will allow you to turn on the vacuum at the correct time and possibly sense when cd's have run out. Note that a parallel port can sink more current than it sources so for outputs you should connect to the 5v power line and set the output pin to 0 to turn on the output and 1 to turn it off.
The other nice option, which is very, very simple to interface and very cheap is to get hold of a picaxe from http://www.rev-ed.co.uk/picaxe/. These use a very simple programming language (a BASIC spin off) allowing you to read serial data in and control the servos and digital I/O on one chip. Last time I used one, the language was a bit simple - if statements had to jumped labels, else didn't exist.
If you do use a microcontroller and servos, it is best to use a dual voltage power supply as servos are noisy and can cause the microcontrollers to reset.
As for switching loads such as the vacuum on, you'll need to use a mosfet or (if money is no object) the simpler option, a solid state relay.
All digital inputs you use on the microcontroller should be pulled either to +V or ground with say a 5k resistor so they never float.
I cannot stress how simple and cheap the picaxes are. They have a built in interpreter so although code space is minimal on the small 8 pin units, they are programmable via a simple serial lead.
Good luck. Once you get into automation control, you'll never be able to stop. I'm in the middle of building a 3 axis CNC router so I can cut parts for other projects (I tell my girlfriend it's so she can cut out xmas decorations!).

You might want to contact Aaron Shephard about his Florian project.

I've found that a really easy board to control stepper motors or sorvos are produced by phidgets - the API is incredibly easy, and available for a vast array of platforms.

Related

Getting FPS and frame-time info from a GPU

I am a mathematician and not a programmer, I have a notion on the basics of programming and am a quite advanced power-user both in linux and windows.
I know some C and some python but nothing much.
I would like to make an overlay so that when I start a game it can get info about amd and nvidia GPUs like frame time and FPS because I am quite certain the current system benchmarks use to compare two GPUs is flawed because small instances and scenes that bump up the FPS momentarily (but are totally irrelevant in terms of user experience) result in a higher average FPS number and mislead the market either unintentionally or intentionally (for example, I cant remember the name of the game probably COD there was a highly tessellated entity on the map that wasnt even visible to the player which lead AMD GPUs to seemingly under perform when roaming though that area leading to lower average FPS count)
I have an idea on how to calculate GPU performance in theory but I dont know how to harvest the data from the GPU, Could you refer me to api manuals or references to help me making such an overlay possible?
I would like to study as little as possible (by that I mean I would like to learn what I absolutely have to learn in order to get the job done I dont intent to become a coder).
I thank you in advance.
It is generally what the Vulkan Layer system is for, which allows to intercept API commands and inject your own. But it is nontrivial to code it yourself. Here are some pre-existing open-source options for you:
To get to timing info and draw your custom overlay you can use (and modify) a tool like OCAT. It supports Direct3D 11, Direct3D 12, and Vulkan apps.
To just get the timing (and other interesting info) as CSV you can use a command-line tool like PresentMon. Should work in D3D, and I have been using it with Vulkan apps too and it seems to accept them.

What are the steps should be taken to make sure that the OpenCV code running on PC will run on a particular embedded device?

I want to port a good OpenCV code on an embedded platform. Earlier such stuffs were very difficult to perform but now TI has come up with nice embedded platforms which are comparatively hassle free as they say.
I want to know following things:
Given that :
The OpenCV code is already running on PC smoothly. (obviously)
Need to determine these before purchasing the device.
Can't put the code here in stackoverflow. :P
To chose from Texas Instruments: C6000.
Questions:
How to make it sure that the porting will be done?
What steps to be taken to make it sure that after porting the code, will run (at least).
to determine whether the code might require some changes to make its run smooth.
The point 3 above is optional.
I need info which will at least give me some start up in this regard.
What I thought I should do?
I am to list the inbuilt functions down.
Then to find available online bench marking for those functions for the particular device like as shown towards the end of this doc.
...
Need to know how to proceed further?
However C6-Integra™ DSP+ARM Processor seems the best.
The best you can do is to try a device simulator (if it is available), but what you'll see there is far from perfect.
Actually, nothing can tell you how fast and how well the app will run on the embedded device before running you specific app on that specific device.
So:
Step 1 Buy it
Step 2 Try it
Things to consider:
embedded CPU architecture: Your app needs a big cache? how big is the embedded cache?
algorithm: do you use a lot of floating point operations? how good is the device at floating point ops?
do you have memory transfers? data bus on a PC is waaay faster than on embedded
hardware support: do you use a lot of double-precision calculations? they are emulated on ARMs. They are gonna kill your app (from millisecons on a PC it can go to seconds on a ARM)
Acceleration. Do your functions use SSE? (many OpenCV funcs are SSEd, even if you don't know). Do you have the NEON counterpart? (OpenCV does not have much support for that). The difference can be orders of magnitude from x86 SSE to embedded without NEON.
and many, many others.
So, again: no one can tell you how it will work. Just the combination between the specific app and the real device tells the truth.
even a run on a similar device is not relevant. It can run smoothly on a given processor, and with another, with similar freq or listed memory, it will slow down too much
This is an interesting question but run is a very generic word in this context, therefore I feel the need to break it down to other 2 questions:
Will it compile in an embedded device?
Will it run as fast/smooth as in a PC?
I've used OpenCV in a lot of different devices, including ARM, SH4, MIPS and I found out that sometimes the manufacturer of the device itself provides a compiled version of OpenCV (for my surprise), which is great. That's something you can look into, maybe the manufacturer of your device provide OpenCV binaries.
There's no way to know for sure how smooth your OpenCV application will be on the target device unless you are able to find some benchmark of OpenCV running in there. PCs have far better processing power than embedded devices, so you can expect less performance from the target device.
There are 3rd party applications like opencv-performance, that you can use to test/benchmark the environment once you get your hands on it. And if performance is such a big deal in this project, you might also be interested in this nice article which explain some timing tests done on couple of OpenCV features comparing implementations using the C and C++ interfaces of OpenCV.

iOS / C: Algorithm to detect phonemes

I am searching for an algorithm to determine whether realtime audio input matches one of 144 given (and comfortably distinct) phoneme-pairs.
Preferably the lowest level that does the job.
I'm developing radical / experimental musical training software for iPhone / iPad.
My musical system comprises 12 consonant phonemes and 12 vowel phonemes, demonstrated here. That makes 144 possible phoneme pairs. The student has to sing the correct phoneme pair 'laa duu bee' etc in response to visual stimulus.
I have done a lot of research into this, it looks like my best bet may be to use one of the iOS Sphinx wrappers ( iPhone App › Add voice recognition? is the best source of information I have found ). However, I can't see how I would adapt such a package, can anyone with experience using one of these technologies give a basic rundown of the steps that would be required?
Would training be necessary by the user? I would have thought not, as it is such an elementary task, compared with full language models of thousands of words and far greater and more subtle phoneme base. However, it would be acceptable (not ideal) to have the user train 12 phoneme pairs: { consonant1+vowel1, consonant2+vowel2, ..., consonant12+vowel12 }. The full 144 would be too burdensome.
Is there a simpler approach? I feel like using a fully featured continuous speech recogniser is using a sledgehammer to crack a nut. It would be far more elegant to use the minimum technology that would solve the problem.
So really I'm hunting for any open source software that recognises phonemes.
PS I need a solution which runs pretty much real-time. so even as they are singing the note, firstly it blinks on to illustrate that it picked up the phoneme pair that was sung, and then it glows to illustrate whether they are singing the correct note pitch
If you are looking for a phone-level open source recogniser, then I would recommend HTK. Very good documentation is available with this tool in the form of the HTK Book. It also contains an entire chapter dedicated to building a phone level real-time speech recogniser. From your problem statement above, it seems to me like you might be able to re-work that example into your own solution. Possible pitfalls:
Since you want to do a phone level recogniser, the data needed to train the phone models would be very high. Also, your training database should be balanced in terms of distribution of the phones.
Building a speaker-independent system would require data from more than one speaker. And lots of that too.
Since this is open-source, you should also check into the licensing info for any additional details about shipping the code. A good alternative would be to use the on-phone recorder and then have the recorded waveform sent over a data channel to a server for the recognition, pretty much something like what google does.
I have a little bit of experience with this type of signal processing, and I would say that this is probably not the type of finite question that can be answered definitively.
One thing worth noting is that although you may restrict the phonemes you are interested in, the possibility space remains the same (i.e. infinite-ish). User training might help the algorithms along a bit, but useful training takes quite a bit of time and it seems you are averse to too much of that.
Using Sphinx is probably a great start on this problem. I haven't gotten very far in the library myself, but my guess is that you'll be working with its source code yourself to get exactly what you want. (Hooray for open source!)
...using a sledgehammer to crack a nut.
I wouldn't label your problem a nut, I'd say it's more like a beast. It may be a different beast than natural language speech recognition, but it is still a beast.
All the best with your problem solving.
Not sure if this would help: check out OpenEars' LanguageModelGenerator. OpenEars uses Sphinx and other libraries.
http://www.hfink.eu/matchbox
This page links to both YouTube video demo and github source.
I'm guessing it would still be a lot of work to mould it into the shape I'm after, but is also definitely does do a lot of the work.

SDR kit with 2.4GHz RF frontend?

Do you know a SDR (Software Defined Radio) kit with a 2.4GHz ISM band (2400MHz - 2483.5MHz) transceiver?
I need to perform some software defined radio including customised modulation. Also the price for one kit should be at maximum $1000. I know there are some extremely expensive solutions out there, but that is unfortunately not an option.
Also a low delay from reception to transmission is necessary, thus the GNU Radio + USRP solution is not usable.
Update:
I have taken a closer look at the USRP solution. From previous experience with the USRP + GNU Radio software I initially completely dismissed it as a solution in this case. I did that because I need to implement a packet radio protocol, thus I need precise bit synchronisation between input and output, and I need low delay that would allow me to transmit the next symbol following a received symbol, with a rate of 1000 kBaud.
From experience I know that the GNU Radio framework as default uses streaming chains of blocks, with very little synchronisation between TX and RX. Thus I suspect that using the USRP I would probably have to work directly with libusrp, and avoid most of the GNU Radio software. Am I mistaken in this?
I would suggest taking a look at the GNU Radio (gnuradio.org) SDR toolkit. Several projects (such as this one) have successfully used it for Bluetooth research.
There also exists development hardware designed for use with GNU Radio called the Universal Software Radio Peripheral which, with a suitable daughterboard for 2.4GHz development, costs around $1000.
I'd like to second GNU Radio. Specifically you are looking for the USRP not the USRP2. The USRP2 is still in heavy development(and out of stock) while the USRP is a stable platform for GNU Radio. The USRP motherboard cost $700. The daughterboard transceiver you want is the RX2400(2.4-2.9GHz, TX=50mW). You can find both of these boards at Ettus Research
Update six years later: USRPs come in the sub-1000$ range (B200/B210), they have very strict synchronization (ADC-rate accurate timed commands can control sampling) and coherency. GNU Radio supports these features through the gr-uhd interface.
Describing latency is quite a bit more complex, because it depends much more on how you deal with the data coming from any SDR frontend -- really, frontend latency isn't usually the problem when you try to do your processing on a general purpose OS, which makes no hard real-time guarantees. However, many just "hide" the latencies elegantly by employing timed commands and letting the frontend get the data early enough.
I recommend HackRF One wich is a half-duplex tranceiver form 1MHz to 6GHz and also has huge comunity support but is half the price of USRP.
EDIT
You now also have LimeSDR. It has 2 Rx and 2 Tx MIMO full-duplex channels and it's cheaper than tje HackRF. The only drawback may be the shipping time because at this moment there's no stock so you will have to pre-order.
We have successfully been using a professional development platform from Sundance Multiprocessor Technology (www.sundance.com). They do have some very affordable 2.4GHz/5GHz RF front-end solutions with integrated ADC/DAC and multiple DSP/FPGA processors.
University offers: http://www.sundance.com/docs/mimo_lte_booklet.pdf

Computer vision application for automotive telematics application

What sort of application can be considered to be the really business winner for automotive telematics applications related to image processing/computer vision ?
here are the criteria :
1. Innovative
2. Social
3. Fun.
Have you read the articles from the DARPA grand challenge winners?
DARPA site
Google Scholar
I believe the "DARPA Grand Challenge" style of automation meets your .1 requirement as there are plenty of innovation on that front.
But I still think that we are a good decade away from a fully autonomous vehicle, even though the technology is almost there. The main reason is that people are still very afraid of relenting control to the computer, even though it might be the safest choice.
The transition will be slow. More and more models will bring small chunks of automation, such as smarter cruise control systems (that's a big winner right now), autonomous parking (in the market for a while now) and anti collision systems.
Which brings us to your .2 and .3
The above mentioned systems are not fun, they are necessary [for increased safety]. Nowadays, Social Media and Fun don't really mix with driving because they distract the driver from its main task. In the future, when you're on the freeway in auto-pilot mode, you will be able to open your laptop and be free to do whatever you want, since computers will be always connected to the internet. So I don't believe the car itself needs to provide you that aspect of entertainment.
What I do believe it's a killer functionality for cars is the enhancement of intelligent comfort systems integrated with biometrics. Nowadays, cars already have things like personal keys that will make it adjust things like seat height and etc according to your preferences, but it would be much nicer if it could automatically identify who is the driver by some biometric feature (iris, etc) and adjust multiple parameters automatically. That's the end of the key. I'm not talking about seat and pedals adjustment, but transmission style (husband likes a more aggressive transmission), performance limiters (daughter cannot exceed 90% of posted limit... the car knows what the limit is according to where it is).
In my opinion, if you implement biometric recognition + autonomous navigation, the possibilities are endless.
Although none of the applications here use computer vision, they are probably the best once out there yet. They have received quite a bit of media hype.

Resources