What is the difference between Early and Late Binding? - binding

What is the difference between early and late binding?

The short answer is that early (or static) binding refers to compile time binding and late (or dynamic) binding refers to runtime binding (for example when you use reflection).

In compiled languages, the difference is stark.
Java:
//early binding:
public create_a_foo(*args) {
return new Foo(args)
}
my_foo = create_a_foo();
//late binding:
public create_something(Class klass, *args) {
klass.new_instance(args)
}
my_foo = create_something(Foo);
In the first example, the compiler can do all sorts of neat stuff at compile time. In the second, you just have to hope that whoever uses the method does so responsibly. (Of course, newer JVMs support the Class<? extends Foo> klass structure, which can greatly reduce this risk.)
Another benefit is that IDEs can hotlink to the class definition, since it's declared right there in the method. The call to create_something(Foo) might be very far from the method definition, and if you're looking at the method definition, it might be nice to see the implementation.
The major advantage of late binding is that it makes things like inversion-of-control easier, as well as certain other uses of polymorphism and duck-typing (if your language supports such things).

Similar but more detailed answer from Herbert Schildt C++ book:-
Early binding refers to events that occur at compile time. In essence, early binding occurs when all information needed to call a function is known at compile time. (Put differently, early binding means that an object and a function call are bound during compilation.) Examples of early binding include normal function calls (including standard library functions), overloaded function calls, and overloaded operators. The main advantage to early binding is efficiency. Because all information necessary to call a function is determined at compile time, these types of function calls are very fast.
The opposite of early binding is late binding. Late binding refers
to function calls that are not resolved until run time. Virtual functions are used to achieve late binding. As you know, when access is via a base pointer or reference, the virtual function actually called is determined by the type of object pointed to by the pointer. Because in most cases this cannot be determined at compile time, the object and the function are not linked until run time. The main advantage to late binding is flexibility. Unlike early binding, late binding allows you to create programs that can respond to events occurring while the program executes without having to create a
large amount of "contingency code." Keep in mind that because a function call is not resolved until run time, late binding can make for somewhat slower execution times.
However today, fast computers have significantly reduced the execution times related to late binding.

Taken directly from http://word.mvps.org/fAQs/InterDev/EarlyvsLateBinding.htm
There are two ways to use Automation (or OLE Automation) to
programmatically control another application.
Late binding uses CreateObject to create and instance of the
application object, which you can then control. For example, to create
a new instance of Excel using late binding:
Dim oXL As Object
Set oXL = CreateObject("Excel.Application")
On the other hand, to manipulate an existing instance of Excel (if
Excel is already open) you would use GetObject (regardless whether
you're using early or late binding):
Dim oXL As Object
Set oXL = GetObject(, "Excel.Application")
To use early binding, you first need to set a reference in your
project to the application you want to manipulate. In the VB Editor of
any Office application, or in VB itself, you do this by selecting
Tools + References, and selecting the application you want from the
list (e.g. “Microsoft Excel 8.0 Object Library”).
To create a new instance of Excel using early binding:
Dim oXL As Excel.Application
Set oXL = New Excel.Application
In either case, incidentally, you can first try to get an existing
instance of Excel, and if that returns an error, you can create a new
instance in your error handler.

In interpreted languages, the difference is a little more subtle.
Ruby:
# early binding:
def create_a_foo(*args)
Foo.new(*args)
end
my_foo = create_a_foo
# late binding:
def create_something(klass, *args)
klass.new(*args)
end
my_foo = create_something(Foo)
Because Ruby is (generally) not compiled, there isn't a compiler to do the nifty up-front stuff. The growth of JRuby means that more Ruby is compiled these days, though, making it act more like Java, above.
The issue with IDEs still stands: a platform like Eclipse can look up class definitions if you hard-code them, but cannot if you leave them up to the caller.
Inversion-of-control is not terribly popular in Ruby, probably because of its extreme runtime flexibility, but Rails makes great use of late binding to reduce the amount of configuration necessary to get your application going.

public class child()
{ public void method1()
{ System.out.println("child1");
}
public void method2()
{ System.out.println("child2");
}
}
public class teenager extends child()
{ public void method3()
{ System.out.println("teenager3");
}
}
public class adult extends teenager()
{
public void method1()
{ System.out.println("adult1);
super.method1();
}
}
//In java
public static void main(String []args)
{ ((teenager)var).method1();
}
This will print out
adult1
child1
In early binding the compiler will have access to all of the methods
in child and teenager
but in late binding (at runtime), it will check for methods that are overridden
at runtime.
Hence method1(from child -- early binding) will be overridden by the method1 from adult at runtime(late binding)
Then it will implement method1 from child since there is no method1 in method1 in teenager.
Note that if child did not have a method1 then the code in the main would not compile.

The compile time polymorphism also called as the overloading or early binding or static binding when we have the same method name with different behaviors. By implementing the multiple prototype of the same method and different behavior occurs in it. Early binding refers first compilation of the program .
But in late binding object is runtime occurs in program. Also called as Dynamic binding or overriding or Runtime polymorphism.

The easiest example in java:
Early (static or overloading) binding:
public class Duck {
public static void quack(){
System.out.println("Quack");
}
}
public class RubberDuck extends Duck {
public static void quack(){
System.out.println("Piiiiiiiiii");
}
}
public class EarlyTest {
public static void main(String[] args) {
Duck duck = new Duck();
Duck rubberduck = new RubberDuck();
duck.quack();
rubberduck.quack(); //early binding - compile time
}
}
Result is:
Quack
Quack
while for Late (dynamic or overriding) binding:
public class Duck {
public void quack(){
System.out.println("Quack");
}
}
public class RubberDuck extends Duck {
public void quack(){
System.out.println("Piiiiiiiiii");
}
}
public class LateTest {
public static void main(String[] args){
Duck duck = new Duck();
Duck rubberduck = new RubberDuck();
duck.quack();
rubberduck.quack(); //late binding - runtime
}
}
result is:
Quack
Piiiiiiiiii
Early binding happens in compile time, while late binding during runtime.

Related

Access static Java variables from js code in Nashorn engine

While trying to port old code running Rhino engine to Nashorn in Java 8, I got the trouble, static properties/methods cannot be accessed from running js script. If I use Rhino, it runs perfectly. I don't know what happens with the implementation of the new Nashorn engine.
import javax.script.*;
public class StaticVars {
public static String myname = "John\n";
public static void main(String[] args) {
try{
ScriptEngine engine;
ScriptEngineManager manager = new ScriptEngineManager();
engine=System.getProperty("java.version").startsWith("1.8")?
manager.getEngineByName("Nashorn") : //j1.8_u51
manager.getEngineByName("JavaScript"); //j1.7
engine.put("staticvars", new StaticVars());
engine.eval("print(staticvars.myname);");
//print "John" if ran with java 7
//print "undefined" if ran with java 8
} catch(Exception e){e.printStackTrace();}
}
}
In Nashorn, you can't access class static members through class instances. There are multiple ways to get at statics. You can obtain a type object that acts as both a constructor and as a static namespace, much like a type name acts in Java:
var StaticVars = Java.type("StaticVars"); // use your full package name if you have it
print(StaticVars.myname);
Or, pass in a java.lang.Class object and use the .static pseudo-property to access the statics:
engine.put("StaticVarsClass", StaticVars.class);
followed by:
var StaticVars = StaticVarsClass.static;
print(StaticVars.myname);
in the script. In general, .static is the inverse operation to .class:
var BitSet = Java.type("java.util.BitSet");
var bitSetClass = BitSet.class; // produces a java.lang.Class object, just like in Java
print(BitSet === bitSetClass.static); // prints true
var bitSet = new BitSet(); // type object creates a new bitset when used as a constructor
var thisWontWork = new bitSetClass(); // java.lang.Class can't be used as a constructor.
As you can see, we distinguish three concepts:
the runtime class objects, which are instances of java.lang.Class. They aren't special, and you only can use the Class API on them (.getSuperclass(), .getName(), etc.)
instances of classes themselves (normal objects that you can access instance members on)
type objects, which are both namespaces for static members of classes they represent, as well as constructors. The closest equivalent in Java to them is the name of the class as used in source code; in JavaScript they are actual objects.
This actually produces least ambiguity, as everything is in its place, and maps most closely to Java platform idioms.
This is not the way js should work. I think this is a design bug in Nashorn. Assume you have a mixed util passing vars from some java runtime system to the js script. This object contains one static method fmtNumber(someString) and one object method jutil.getFormVar(someString). The users don't need to know that Java is serving this platform. You simply tell them jutil is a "system hook" belonging to the framework foo. As a user of this framework I don't care about if its static or not. I am a js developer, i don't know about static or not. I want to script something real quick. This is how the code in rhino looks like.
var x = jutil.getFormVar("x");
print(jutil.fmtNumber(x));
Now in nashorn I have to distinguish between them. Even worse I even have to educate my users to distinguish between them and teach them java terms, which they might not know because this is what an abstraction layer is all about: a self containing system without the need to know the underlying mechanisms. This distinction is way to much cognitive overload and you did not think about other usecases than java developers scripting for them self which they probably wont to because the already know a good language called Java. You are thinking form your implementation as a Java developer when instead you should think how you could use the power of the Java Plattform in the background, hiding all the nasty details from JS developers. What would a webdeveloper say if he needs to distinguish between the static C++ implementation in the browser?

PHP Dependency Injection - magic methods injections?

I'm trying to get my head around DI. Am I doing it correctly for classes that follow DI pattern?
class Boo
{
public $title = 'Mr';
public $name = 'John';
protected $deps;
public function __construct($deps)
{
$this->deps = $deps;
}
public function methodBoo()
{
return 'Boo method '.$this->deps;
}
}
class Foo
{
private $objects;
public function __construct()
{
}
// Set the inaccessible property magically.
public function __set($name, $value)
{
$this->$name = $value;
}
// Set the inaccessible $class magically.
public function __get($class)
{
if(isset($this->objects[$class]))
{
return $this->objects[$class];
}
return $this->objects[$class] = new $class($this->deps);
}
public function methodFoo()
{
return $this->Boo->methodBoo();
}
}
$Foo = new Foo();
$Foo->deps = 'says hello';
var_dump($Foo->methodFoo());
result,
string 'Boo method says hello' (length=21)
I don't want to use construction injection in some cases because not all methods in Foo rely on the same injections. For instance,methodFoo()in Foo relies on Boo only, while other methods rely on other classes/ injections.
Also, I don't want to use setter injection either because I might have to write lots of them in Foo, like
setBoo() {}
setToo() {}
setLoo() {}
... and so on...
So I thought using the magic method __get and __set could save me from ending up writing a long list of them. With this, I only 'inject' the dependency when it is needed by a method in Foo.
Is this correct way of doing it? I haven't done any test with an unit test before. Can this solution be tested?
Or any better solutions you have got?
Don't Use Magic Methods If Possible...
Don't use magic methods if possible as it can make it very difficult for yourself or anyone else to come back at a later date and understand where and how certain objects were injected (even when using a good IDE). These __set and __get magic methods are not a long term solution to your problem and will only add confusion in the long run.
As you already know you can use 'constructor' injection for setting properties and injecting objects that are 'required' during instantiation of your object.
Alternatively, if you have dependencies that are 'optional' then use setter / getter methods. That way you 'know' what objects your class uses to perform it's function.
If your class needs say 5 or more dependencies (required or optional) than perhaps your class is try to do to much. Break it down into smaller classes that require less dependencies and you will find your code not only becomes more readable / understandable but also more modular and reusable. (Separation of concerns, etc.)
Regarding testing of a class that uses magic methods, I'm sure it can be done but at much more pains than if one didn't use magic methods.
Google 'Design Patterns'. What you find and learn about design patterns will improve the way you 'join' or 'wire' your classes together.

Why does one use dependency injection?

I'm trying to understand dependency injections (DI), and once again I failed. It just seems silly. My code is never a mess; I hardly write virtual functions and interfaces (although I do once in a blue moon) and all my configuration is magically serialized into a class using json.net (sometimes using an XML serializer).
I don't quite understand what problem it solves. It looks like a way to say: "hi. When you run into this function, return an object that is of this type and uses these parameters/data."
But... why would I ever use that? Note I have never needed to use object as well, but I understand what that is for.
What are some real situations in either building a website or desktop application where one would use DI? I can come up with cases easily for why someone may want to use interfaces/virtual functions in a game, but it's extremely rare (rare enough that I can't remember a single instance) to use that in non-game code.
First, I want to explain an assumption that I make for this answer. It is not always true, but quite often:
Interfaces are adjectives; classes are nouns.
(Actually, there are interfaces that are nouns as well, but I want to generalize here.)
So, e.g. an interface may be something such as IDisposable, IEnumerable or IPrintable. A class is an actual implementation of one or more of these interfaces: List or Map may both be implementations of IEnumerable.
To get the point: Often your classes depend on each other. E.g. you could have a Database class which accesses your database (hah, surprise! ;-)), but you also want this class to do logging about accessing the database. Suppose you have another class Logger, then Database has a dependency to Logger.
So far, so good.
You can model this dependency inside your Database class with the following line:
var logger = new Logger();
and everything is fine. It is fine up to the day when you realize that you need a bunch of loggers: Sometimes you want to log to the console, sometimes to the file system, sometimes using TCP/IP and a remote logging server, and so on ...
And of course you do NOT want to change all your code (meanwhile you have gazillions of it) and replace all lines
var logger = new Logger();
by:
var logger = new TcpLogger();
First, this is no fun. Second, this is error-prone. Third, this is stupid, repetitive work for a trained monkey. So what do you do?
Obviously it's a quite good idea to introduce an interface ICanLog (or similar) that is implemented by all the various loggers. So step 1 in your code is that you do:
ICanLog logger = new Logger();
Now the type inference doesn't change type any more, you always have one single interface to develop against. The next step is that you do not want to have new Logger() over and over again. So you put the reliability to create new instances to a single, central factory class, and you get code such as:
ICanLog logger = LoggerFactory.Create();
The factory itself decides what kind of logger to create. Your code doesn't care any longer, and if you want to change the type of logger being used, you change it once: Inside the factory.
Now, of course, you can generalize this factory, and make it work for any type:
ICanLog logger = TypeFactory.Create<ICanLog>();
Somewhere this TypeFactory needs configuration data which actual class to instantiate when a specific interface type is requested, so you need a mapping. Of course you can do this mapping inside your code, but then a type change means recompiling. But you could also put this mapping inside an XML file, e.g.. This allows you to change the actually used class even after compile time (!), that means dynamically, without recompiling!
To give you a useful example for this: Think of a software that does not log normally, but when your customer calls and asks for help because he has a problem, all you send to him is an updated XML config file, and now he has logging enabled, and your support can use the log files to help your customer.
And now, when you replace names a little bit, you end up with a simple implementation of a Service Locator, which is one of two patterns for Inversion of Control (since you invert control over who decides what exact class to instantiate).
All in all this reduces dependencies in your code, but now all your code has a dependency to the central, single service locator.
Dependency injection is now the next step in this line: Just get rid of this single dependency to the service locator: Instead of various classes asking the service locator for an implementation for a specific interface, you - once again - revert control over who instantiates what.
With dependency injection, your Database class now has a constructor that requires a parameter of type ICanLog:
public Database(ICanLog logger) { ... }
Now your database always has a logger to use, but it does not know any more where this logger comes from.
And this is where a DI framework comes into play: You configure your mappings once again, and then ask your DI framework to instantiate your application for you. As the Application class requires an ICanPersistData implementation, an instance of Database is injected - but for that it must first create an instance of the kind of logger which is configured for ICanLog. And so on ...
So, to cut a long story short: Dependency injection is one of two ways of how to remove dependencies in your code. It is very useful for configuration changes after compile-time, and it is a great thing for unit testing (as it makes it very easy to inject stubs and / or mocks).
In practice, there are things you can not do without a service locator (e.g., if you do not know in advance how many instances you do need of a specific interface: A DI framework always injects only one instance per parameter, but you can call a service locator inside a loop, of course), hence most often each DI framework also provides a service locator.
But basically, that's it.
P.S.: What I described here is a technique called constructor injection, there is also property injection where not constructor parameters, but properties are being used for defining and resolving dependencies. Think of property injection as an optional dependency, and of constructor injection as mandatory dependencies. But discussion on this is beyond the scope of this question.
I think a lot of times people get confused about the difference between dependency injection and a dependency injection framework (or a container as it is often called).
Dependency injection is a very simple concept. Instead of this code:
public class A {
private B b;
public A() {
this.b = new B(); // A *depends on* B
}
public void DoSomeStuff() {
// Do something with B here
}
}
public static void Main(string[] args) {
A a = new A();
a.DoSomeStuff();
}
you write code like this:
public class A {
private B b;
public A(B b) { // A now takes its dependencies as arguments
this.b = b; // look ma, no "new"!
}
public void DoSomeStuff() {
// Do something with B here
}
}
public static void Main(string[] args) {
B b = new B(); // B is constructed here instead
A a = new A(b);
a.DoSomeStuff();
}
And that's it. Seriously. This gives you a ton of advantages. Two important ones are the ability to control functionality from a central place (the Main() function) instead of spreading it throughout your program, and the ability to more easily test each class in isolation (because you can pass mocks or other faked objects into its constructor instead of a real value).
The drawback, of course, is that you now have one mega-function that knows about all the classes used by your program. That's what DI frameworks can help with. But if you're having trouble understanding why this approach is valuable, I'd recommend starting with manual dependency injection first, so you can better appreciate what the various frameworks out there can do for you.
As the other answers stated, dependency injection is a way to create your dependencies outside of the class that uses it. You inject them from the outside, and take control about their creation away from the inside of your class. This is also why dependency injection is a realization of the Inversion of control (IoC) principle.
IoC is the principle, where DI is the pattern. The reason that you might "need more than one logger" is never actually met, as far as my experience goes, but the actually reason is, that you really need it, whenever you test something. An example:
My Feature:
When I look at an offer, I want to mark that I looked at it automatically, so that I don't forget to do so.
You might test this like this:
[Test]
public void ShouldUpdateTimeStamp
{
// Arrange
var formdata = { . . . }
// System under Test
var weasel = new OfferWeasel();
// Act
var offer = weasel.Create(formdata)
// Assert
offer.LastUpdated.Should().Be(new DateTime(2013,01,13,13,01,0,0));
}
So somewhere in the OfferWeasel, it builds you an offer Object like this:
public class OfferWeasel
{
public Offer Create(Formdata formdata)
{
var offer = new Offer();
offer.LastUpdated = DateTime.Now;
return offer;
}
}
The problem here is, that this test will most likely always fail, since the date that is being set will differ from the date being asserted, even if you just put DateTime.Now in the test code it might be off by a couple of milliseconds and will therefore always fail. A better solution now would be to create an interface for this, that allows you to control what time will be set:
public interface IGotTheTime
{
DateTime Now {get;}
}
public class CannedTime : IGotTheTime
{
public DateTime Now {get; set;}
}
public class ActualTime : IGotTheTime
{
public DateTime Now {get { return DateTime.Now; }}
}
public class OfferWeasel
{
private readonly IGotTheTime _time;
public OfferWeasel(IGotTheTime time)
{
_time = time;
}
public Offer Create(Formdata formdata)
{
var offer = new Offer();
offer.LastUpdated = _time.Now;
return offer;
}
}
The Interface is the abstraction. One is the REAL thing, and the other one allows you to fake some time where it is needed. The test can then be changed like this:
[Test]
public void ShouldUpdateTimeStamp
{
// Arrange
var date = new DateTime(2013, 01, 13, 13, 01, 0, 0);
var formdata = { . . . }
var time = new CannedTime { Now = date };
// System under test
var weasel= new OfferWeasel(time);
// Act
var offer = weasel.Create(formdata)
// Assert
offer.LastUpdated.Should().Be(date);
}
Like this, you applied the "inversion of control" principle, by injecting a dependency (getting the current time). The main reason to do this is for easier isolated unit testing, there are other ways of doing it. For example, an interface and a class here is unnecessary since in C# functions can be passed around as variables, so instead of an interface you could use a Func<DateTime> to achieve the same. Or, if you take a dynamic approach, you just pass any object that has the equivalent method (duck typing), and you don't need an interface at all.
You will hardly ever need more than one logger. Nonetheless, dependency injection is essential for statically typed code such as Java or C#.
And...
It should also be noted that an object can only properly fulfill its purpose at runtime, if all its dependencies are available, so there is not much use in setting up property injection. In my opinion, all dependencies should be satisfied when the constructor is being called, so constructor-injection is the thing to go with.
I think the classic answer is to create a more decoupled application, which has no knowledge of which implementation will be used during runtime.
For example, we're a central payment provider, working with many payment providers around the world. However, when a request is made, I have no idea which payment processor I'm going to call. I could program one class with a ton of switch cases, such as:
class PaymentProcessor{
private String type;
public PaymentProcessor(String type){
this.type = type;
}
public void authorize(){
if (type.equals(Consts.PAYPAL)){
// Do this;
}
else if(type.equals(Consts.OTHER_PROCESSOR)){
// Do that;
}
}
}
Now imagine that now you'll need to maintain all this code in a single class because it's not decoupled properly, you can imagine that for every new processor you'll support, you'll need to create a new if // switch case for every method, this only gets more complicated, however, by using Dependency Injection (or Inversion of Control - as it's sometimes called, meaning that whoever controls the running of the program is known only at runtime, and not complication), you could achieve something very neat and maintainable.
class PaypalProcessor implements PaymentProcessor{
public void authorize(){
// Do PayPal authorization
}
}
class OtherProcessor implements PaymentProcessor{
public void authorize(){
// Do other processor authorization
}
}
class PaymentFactory{
public static PaymentProcessor create(String type){
switch(type){
case Consts.PAYPAL;
return new PaypalProcessor();
case Consts.OTHER_PROCESSOR;
return new OtherProcessor();
}
}
}
interface PaymentProcessor{
void authorize();
}
** The code won't compile, I know :)
The main reason to use DI is that you want to put the responsibility of the knowledge of the implementation where the knowledge is there. The idea of DI is very much inline with encapsulation and design by interface.
If the front end asks from the back end for some data, then is it unimportant for the front end how the back end resolves that question. That is up to the requesthandler.
That is already common in OOP for a long time. Many times creating code pieces like:
I_Dosomething x = new Impl_Dosomething();
The drawback is that the implementation class is still hardcoded, hence has the front end the knowledge which implementation is used. DI takes the design by interface one step further, that the only thing the front end needs to know is the knowledge of the interface.
In between the DYI and DI is the pattern of a service locator, because the front end has to provide a key (present in the registry of the service locator) to lets its request become resolved.
Service locator example:
I_Dosomething x = ServiceLocator.returnDoing(String pKey);
DI example:
I_Dosomething x = DIContainer.returnThat();
One of the requirements of DI is that the container must be able to find out which class is the implementation of which interface. Hence does a DI container require strongly typed design and only one implementation for each interface at the same time. If you need more implementations of an interface at the same time (like a calculator), you need the service locator or factory design pattern.
D(b)I: Dependency Injection and Design by Interface.
This restriction is not a very big practical problem though. The benefit of using D(b)I is that it serves communication between the client and the provider. An interface is a perspective on an object or a set of behaviours. The latter is crucial here.
I prefer the administration of service contracts together with D(b)I in coding. They should go together. The use of D(b)I as a technical solution without organizational administration of service contracts is not very beneficial in my point of view, because DI is then just an extra layer of encapsulation. But when you can use it together with organizational administration you can really make use of the organizing principle D(b)I offers.
It can help you in the long run to structure communication with the client and other technical departments in topics as testing, versioning and the development of alternatives. When you have an implicit interface as in a hardcoded class, then is it much less communicable over time then when you make it explicit using D(b)I. It all boils down to maintenance, which is over time and not at a time. :-)
Quite frankly, I believe people use these Dependency Injection libraries/frameworks because they just know how to do things in runtime, as opposed to load time. All this crazy machinery can be substituted by setting your CLASSPATH environment variable (or other language equivalent, like PYTHONPATH, LD_LIBRARY_PATH) to point to your alternative implementations (all with the same name) of a particular class. So in the accepted answer you'd just leave your code like
var logger = new Logger() //sane, simple code
And the appropriate logger will be instantiated because the JVM (or whatever other runtime or .so loader you have) would fetch it from the class configured via the environment variable mentioned above.
No need to make everything an interface, no need to have the insanity of spawning broken objects to have stuff injected into them, no need to have insane constructors with every piece of internal machinery exposed to the world. Just use the native functionality of whatever language you're using instead of coming up with dialects that won't work in any other project.
P.S.: This is also true for testing/mocking. You can very well just set your environment to load the appropriate mock class, in load time, and skip the mocking framework madness.

Injecting generated classes without writing too much module configuration code

Here's the situation: I have an abstract class with a constructor that takes a boolean (which controls some caching behavior):
abstract class BaseFoo { protected BaseFoo(boolean cache) {...} }
The implementations are all generated source code (many dozens of them). I want to create bindings for all of them automatically, i.e. without explicit hand-coding for each type being bound. I want the injection sites to be able to specify either caching or non-caching (true/false ctor param). For example I might have two injections like:
DependsOnSomeFoos(#Inject #NonCaching AFoo aFoo, #Inject #Caching BFoo bFoo) {...}
(Arguably that's a bad thing to do, since the decision to cache or not might better be in a module. But it seems useful given what I'm working with.)
The question then is: what's the best way to configure bindings to produce a set of generated types in a uniform way, that supports a binding annotation as well as constructor param on the concrete class?
Previously I just had a default constructor on the implementation classes, and simply put an #ImplementedBy on each of the generated interfaces. E.g.:
// This is all generated source...
#ImplementedBy(AFooImpl.class)
interface AFoo { ... }
class AFooImpl extends BaseFoo implements AFoo { AFooImpl() { super(true); } }
But, now I want to allow individual injection points to decide if true or false is passed to BaseFoo, instead of it always defaulting to true. I tried to set up an injection listener to (sneakily) change the true/false value post-construction, but I couldn't see how to "listen" for a range of types injected with a certain annotation.
The problem I keep coming back to is that bindings need to be for a specific type, but I don't want to enumerate all my types centrally.
I also considered:
Writing some kind of scanner to discover all the generated classes and add a pair of bindings for each of them, perhaps using Google Reflections.
Creating additional, trivial "non caching" types (e.g. AFoo.NoCache extends AFoo), which would allow me to go back to #ImplementedBy.
Hard wiring each specific type as either caching/non-caching when it's generated.
I'm not feeling great about any of those ideas. Is there a better way?
UPDATE: Thanks for the comment and answer. I think generating a small module alongside each type and writing out a list of the modules to pull in at runtime via getResources is the winner.
That said, after talking w/ a coworker, we might just dodge the question as I posed it and instead inject a strategy object with a method like boolean shouldCache(Class<? extends BaseFoo> c) into each generated class. The strategy can be implemented on top of the application config and would provide coarse and fine grained control. This gives up on the requirement to vary the behavior by injection site. On the plus side, we don't need the extra modules.
There are two additional approaches to look at (in addition to what you mentioned):
Inject Factory classes instead of your real class; that is, your hand-coded stuff would end up saying:
#Inject
DependsOnSomeFoos(AFoo.Factory aFooFactory, BFoo.Factory bFooFactory) {
AFoo aFoo = aFooFactory.caching();
BFoo bFoo = bFooFactory.nonCaching();
...
}
and your generated code would say:
// In AFoo.java
interface AFoo {
#ImplementedBy(AFooImpl.Factory.class)
interface Factory extends FooFactory<AFoo> {}
// ...
}
// In AFooImpl.java
class AFooImpl extends BaseFoo implements AFoo {
AFooImpl(boolean caching, StuffNeededByAFIConstructor otherStuff) {
super(caching);
// use otherStuff
}
// ...
class Factory implements AFoo.Factory {
#Inject Provider<StuffNeededByAFIConstructor> provider;
public AFoo caching() {
return new AFooImpl(true, provider.get());
}
// ...
}
}
Of course this depends on an interface FooFactory:
interface FooFactory<T> {
T caching();
T nonCaching();
}
Modify the process that does your code generation to generate also a Guice module that you then use in your application setup. I don't know how your code generation is currently structured, but if you have some way of knowing the full set of classes at code generation time you can either do this directly or append to some file that can then be loaded with ClassLoader.getResources as part of a Guice module that autodiscovers what classes to bind.

Spring Philosophy

Everytime I ask anyone what the Spring Framework is or what it does, they simply say to me, you remember that Hollywood principle right "Don't call me, I will call you", that's exactly what Spring Framework does.
What should I make out of this?
It means that a class doesn't manually instantiate the components that it depends on -- something (such as Spring's IoC context) gives the class an instance of each component that it needs. This is usually done either via setters for each component, or a constructor that takes all those components.
Basically instead of a class doing manual instantiation by itself:
public class Foo {
private Bar bar;
public void doStuff() {
bar = new BarImplementation();
bar.doMoreStuff();
}
}
IoC injects the dependency Bar into Foo, so that when you get a Foo object from the context, you know it's ready to use.
public class Foo {
private Bar bar;
public void setBar(Bar bar) { this.bar = bar; }
public void doStuff() {
// bar's already been set by the time this is called!
bar.doMoreStuff();
}
}
You didn't manually instantiate Bar, instead your configuration files (such as Spring XML) set it for you. Additionally, Foo is no longer tied to BarImplementation. Using interfaces allows you to insert different implementations, including mocks used for testing.
Sometimes callback models are more efficient, especially with anything to do with parsing
if you imagine the hollywood situation, its way more efficient for the "casting agent" to call everyone once they know who they are going to cast (or even not call) rather than having to keep taking calls from every applicant wanting an update.
Callbacks. :P That's what that means for me. Callbacks are functions that wait to be called.
See http://en.wikipedia.org/wiki/Inversion_of_Control
Spring does other things too but IoC/Dependency injection seems to be the most noted feature. It can help to make a system less coupled and more flexible.

Resources