Assume that we have N erlang nodes, running same application. I want
to share an mnesia table T1 with all N nodes, which I see no problem.
However, I want to share another mnesia table T2 with pairs of nodes.
I mean the contents of T2 will be identical and replicated to/with
only sharing pair. In another words, I want N/2 different contents for
T2 table. Is this possible with mnesia, not with renaming T2 for each
distinct pair of nodes?
It's possible to do this with mnesia's table fragmentation, if one makes use of the mnesia_frag_hash callback behaviour. This allows you to control the distribution of keys, and it would be possible to construct the keys such that the callback is able to determine which node pair (and thus, which fragment) should be used.
Whether or not this works in your particular case depends on your access patterns and data set. Chances are that it's a pretty convoluted approach, and that you'd be better served by simply using different table names instead.
One table is always one table, no matter how many nodes you share it with. If you want pairs of nodes sharing a table, you would have to create a unique table for each pair of nodes.
You can use the same settings (records etc) for all those tables though, so there shouldn't be so much more work to get it done.
Related
I have searched to find a way to query my data in order to build a table to visualize it properly. The data is an import of a SysML model. The general structure of the data is this:
(node1:Type1)<-[:Reference]-(node2:Type1)-[:Property]->(node3:Type1)<-[:Property]-(node4:Type1)-[:Reference]->(node5:Type1)
Nodes 2 and 4 represent processes, with data being exchanged between them. The data exchanged is represented by node 3. Nodes 1 and 5, represent the tools in which these processes are performed. My ideal situation would be to have a table with columns
node1.name | node2.name | node3.name | node4.name | node5.name
allowing me to view the inputs/outputs of my processes and which tools perform those processes, effectively evaluating the interfaces. However, the queries I'm using are causing duplicates in the rows of the tables, as it's reading 'front to back' as well as 'back to front'. Is there a way to separate each 'step' of the path, and make a column for each step (perhaps by relationship direction)? There are also cases where there is more than one "tool" (node 1 or 5) in which these processes are performed, so a row for each (many to one, one to one, one to many, many to many) would be ideal. Lastly, there are cases where a process (nodes 2 and 4) may have more than just a single relationship. I would like to be able to show all of the process interfaces.
Any help is much appreciated. Thank you in advance for your time.
To fix the mirrored results issue, it helps to use an inequality predicate on the ids of the nodes to ensure a single result: WHERE id(node1) < id(node5)
As for showing all possible paths, that's what Cypher does, so you should see all possible paths that fit the pattern.
I'm trying to improve a fraud detection system for a commerce website. We deal with direct bank transactions, so fraud is a risk we need to manage. I recently learned of graphing databases and can see how it applies to these problems. So, over the past couple of days I set up neo4j and parsed our data into it: example
My intuition was to create a node for each order, and a node for each piece of data associated with it, and then connect them all together. Like this:
MATCH (w:Wallet),(i:Ip),(e:Email),(o:Order)
WHERE w.wallet="ex" AND i.ip="ex" AND e.email="ex" AND o.refcode="ex"
CREATE (w)-[:USED]->(o),(i)-[:USED]->(o),(e)-[:USED]->(o)
But this query runs very slowly as the database size increases (I assume because it needs to search the whole data set for the nodes I'm asking for). It also takes a long time to run a query like this:
START a=node(179)
MATCH (a)-[:USED*]-(d)
WHERE EXISTS(d.refcode)
RETURN distinct d
This is intended to extract all orders that are connected to a starting point. I'm very new to Cypher (<24 hours), and I'm finding it particularly difficult to search for solutions.
Are there any specific issues with the data structure or queries that I can address to improve performance? It ideally needs to complete this kind of thing within a few seconds, as I'd expect from a SQL database. At this time we have about 17,000 nodes.
Always a good idea to completely read through the developers manual.
For speeding up lookups of nodes by a property, you definitely need to create indexes or unique constraints (depending on if the property should be unique to a label/value).
Once you've created the indexes and constraints you need, they'll be used under the hood by your query to speed up your matches.
START is only used for legacy indexes, and for the latest Neo4j versions you should use MATCH instead. If you're matching based upon an internal id, you can use MATCH (n) WHERE id(n) = xxx.
Keep in mind that you should not persist node ids outside of Neo4j for lookup in future queries, as internal node ids can be reused as nodes are deleted and created, so an id that once referred to a node that was deleted may later end up pointing to a completely different node.
Using labels in your queries should help your performance. In the query you gave to find orders, Neo4j must inspect every end node in your path to see if the property exists. Property access tends to be expensive, especially when you're using a variable-length match, so it's better to restrict the nodes you want by label.
MATCH (a)-[:USED*]-(d:Order)
WHERE id(a) = 179
RETURN distinct d
On larger graphs, the variable-length match might start slowing down, so you may get more performance by installing APOC Procedures and using the Path Expander procedure to gather all subgraph nodes and filter down to just Order nodes.
MATCH (a)
WHERE id(a) = 179
CALL apoc.path.expandConfig(a, {bfs:true, uniqueness:"NODE_GLOBAL"}) YIELD path
RETURN LAST(NODES(path)) as d
WHERE d:Order
I have a file in which each line is a record. I want all records with the same value in a certain field (call if field A) to go to the same mapper. I have heard this is called a Map-Side Join, and I also heard that it's easy if the records in the file are sorted by what I call field A.
If it would be easier, the data could be spread across multiple files, but each file sorted on field A.
Is this right? How do I do this in with streaming? I'm using Python. A assume it's just part of the command I use to start Hadoop?
What is the real justification for wanting only certain records to go to certain mappers? If what you want out of this is the final result to be 3 output files (one with all A, another with all B, last with all C), you can accomplish that with multiple reducers. Need to know what you really want to accomplish.
I've been using Neo4j for a little while now and have an app up and running using Neo4j, its all working really well and Neo4j has been really cool at solving this problem, but I now need to extend the app and having been trying to impl. a Key-Value List of data into Neo4j and I'm not sure the best way to go about it.
I have a List, the list is around 7 million elements in length and so a bit long for just storing the whole list in memory and managing it myself. I tested this and it would consume 3Gb.
My choices are either:
(a) Neo4j is just the wrong tool for the job and I should use an actual key-value data store. A little adverse to do this as I'd have to introduce another data store just for this list of data.
(b) Use Neo4j, by creating a node per key-value setting the key and value as properties on the node, but there is no relationship other then having an index to group these nodes together, exposing the key of the key-value as the key on the index.
(c) Create a single node and hold all key-values as properties, this feels wrong, because when getting the node it will load the whole thing into memory, then I'd have to search the properties for the one I'm interested in, and I might as well manage the List myself.
(d) The key is a two part key that actually points to two nodes, so create a relationship and set the value as a property on the relationship. I started down this path, but when it came to doing a lookup for a specific key/value it's not simple and fast, so backed away from this.
Either options 'a' or 'b' feel the way to go.
Any advice would be appreciated.
Example scenario
We have Node A and Node B which has a relationship between the two Nodes.
The nodes all have a property of 'foo', with foo having some value.
In this example node A has foo=X and Node B has foo=Y
We then have this list of K/Vs. One of those K/V is Key:X+Y=Value:Z
So, the original idea was to create another relationship between Node A and Node B and store a property on the relationship holding Z. Then create an index on 'foo' and a relationship idx on the new relationship.
When given Key X+Y get the value.
Lookup logic would be get Node A (from X) and Node B (from y), then walk through Node A relationships to Node B lookup for this new relationship type.
While this will work, I do not like the fact I have to lookup through all relationships to/from the nodes looking for a specific type this is inefficient. Especially if there are many relationships of different types.
So the conclusion to go with options 'A' or 'B', or I'm trying to do something impractical with Neo.
Don't try to store 7 million items in a Neo4j property -- you're right, that's wrong.
Redis and Neo4j often make a good pairing, but I don't quite understand what you're trying to do or what you mean in "d" -- what are the key/value pairs, and how do they relate to the nodes and relationships in the graph? Examples would help.
UPDATE: The most natural way to do this with a graph database is to store it as a property on the edge between the two nodes. Then you can use Gremlin to get its value.
For example, to return a property on an edge that exists between two vertices (nodes) that have some properties:
start = g.idx('vertices')[[key:value]] // start vertex
edge = start.outE(label).as('e') // edge
end = edge.inV.filter{it.someprop == somevalue} // end vertex
prop = end.back('e').prop // edge property
return prop
You could store it in an index like you suggested, but this adds more complexity to your system, and if you need to reference the data as part of the traversal, then you will either have to store duplicate data or look it up in Redis during the traversal, which you can do, see:
Have Gremlin Talk to Redis in Real Time while It's Walking the Graph
https://groups.google.com/d/msg/gremlin-users/xhqP-0wIg5s/bxkNEh9jSw4J
UPDATE 2:
If the ID of vertex a and b are known ahead of time, then it's even easier:
g.v(a).outE(label).filter{it.inVertex.id == b}.prop
If vertex a and b are known ahead of time, then it's:
a.outE(label).filter{it.inVertex == b}.prop
I haven't attempted to work with graphs in Rails before, and am curious as to the best approach. Some background:
I am making a Rails 3 site and thought it would be interesting to store certain objects and their relationships as a graph, where each object is a node and some are connected to show that the two objects are related. The graph does contain cycles, and there wouldn't be more than 100-150 nodes in the graph (probably only closer to 50). One node probably wouldn't have more than five edges, with an average of three to four edges per node.
I figured a simple join table with two columns (each the ID of the object) might be the easiest way to do it, but I doubt it's the best way. Another thought was to use a plugin such as acts_as_tree (which doesn't appear to be updated for Rails 3...) or acts_as_tree_with_dotted_ids, but I am unsure of their ability to work with cycles rather than hierarchical trees.
the most I would currently like is to easily traverse from one node to its siblings. I really can't think of a reason I would want to traverse to a node's sibling's sibling, which is why I was considering just making an SQL join table. I only want to have a section on the site to display objects related to a specified object, and this graph is one of the ways I am specifying relationships.
Advice? Things I should check out? Thanks!
I would use two SQL tables, node and link where a link is simply two foreign keys, source and target. This way you can get the set of inbound or outbound links to a node by performing an SQL select query by constraining the source or target node id. You could take it a step further by adding a "graph_id" column to both tables so you can retrieve all the data for a graph in two queries and build it as a post-processing step.
This strategy should be just as easy (if not easier) than finding, installing, learning to use, and implementing a plugin to do the same, IMHO.
Depending on whether your concern is primarily about operations on graphs, or on storage of graphs, what you need is potentially quite different. If you want convenient operations on graphs, investigate the gem "rgl" (ruby graph library). It has implementations of most of the basic classic traversal and search algorithms.
If you're dealing with something on the order of 150 nodes, you can probably get away with a minimalist adjacency list representation in the database itself, or incidence list. Then you can feed that into RGL for traversal and search operations.
If I remember correctly, RGL has enough abstraction that you may be able to work with an existing class structure and you simply provide methods to get adjacent nodes.
Assuming that it is a directed graph, use a mapping table such as
id | src | dest
where src and dest are FKs to your object table.
If your objects are not all of the same type, either have them all inherit a ruby class or have another table:
id | type | type_id
Where type is the type of object it is and type_id is its id in another table.
By doing this, you should be able to get an array of objects for each object that it points to using:
select dest
from maptable
where dest = self.id
If you need to know its inbound edges, you can preform the same type of query using src instead of dest.
From there, you should be able to easily write any graph algorithms that you want. If you need weights, you can modify the mapping table as such.
id | src | dest | weight