How can I improve this Reinforced Learning scenario in Stable Baselines3? - machine-learning

In this scenario, I present a box observation with numbers 0, 1 or 2 and shape (1, 10).
The odds for 0 and 2 are 2% each, and 96% for 1.
I want the model to learn to pick the index of any 2 that comes. If it doesn't have a 2, just choose 0.
Bellow is my code:
import numpy as np
import gym
from gym import spaces
from stable_baselines3 import PPO, DQN, A2C
from stable_baselines3.common.env_util import make_vec_env
from stable_baselines3.common.vec_env import VecFrameStack
action_length = 10
class TestBot(gym.Env):
def __init__(self):
super(TestBot, self).__init__()
self.total_rewards = 0
self.time = 0
self.action_space = spaces.Discrete(action_length)
self.observation_space = spaces.Box(low=0, high=2, shape=(1, action_length), dtype=np.float32)
def generate_next_obs(self):
p = [0.02, 0.02, 0.96]
a = [0, 2, 1]
self.observation = np.random.choice(a, size=(1, action_length), p=p)
if 2 in self.observation[0][1:]:
self.best_reward += 1
def reset(self):
if self.time != 0:
print('Total rewards: ', self.total_rewards, 'Best possible rewards: ', self.best_reward)
self.best_reward = 0
self.time = 0
self.generate_next_obs()
self.total_rewards = 0
self.last_observation = self.observation
return self.observation
def step(self, action):
reward = 0
if action != 0:
last_value = self.last_observation[0][action]
if last_value == 2:
reward = 1
else:
reward = -1
self.time += 1
self.generate_next_obs()
done = self.time == 4096
info = {}
self.last_observation = self.observation
self.total_rewards += reward
return self.observation, reward, done, info
For training, I used the following:
env = TestBot()
env = make_vec_env(lambda: env, n_envs=1)
model = PPO('MlpPolicy', env, verbose=0)
iters = 0
while True:
iters += 1
model.learn(total_timesteps=4096, reset_num_timesteps=True)
PPO gave the best result, which wasn't so great. It learned to have positive rewards, but took a long time and got stuck in a point far from optimal.
How can I improve the learning of this scenario?

I managed to solve my problem by tunning the PPO parameters.
I had to change the following parameters:
gamma: from 0.99 to 0. It determines the importance of future rewards in the decision-making process. A value of 0 means that only imediate rewards should be considered.
gae_lambda: from 0.95 to 0.65. The gae_lambda parameter in Reinforcement Learning is used in the calculation of the Generalized Advantage Estimation (GAE). GAE is a method for estimating the advantage function in reinforcement learning, which is a measure of how much better a certain action is compared to the average action. A lower value means that PPO doesn't need to use the GAE too much.
clip_range: from 0.2 to function based. It determines the percentage of the decisions that will be done for exploration. At the end, exploration starts to be irrelevant. So, I made a function that uses a high exploration in the first few iteractions and goes to 0 at the end.
I also made a small modification in the environment in order to penalize more the loss of oportunity of picking a number 2 index, but that is done just to accelerate the training.
The following is my final code:
env = TestBot()
env = make_vec_env(lambda: env, n_envs=1)
iters = 0
def clip_range_schedule():
def real_clip_range(progress):
global iters
cr = 0.2
if iters > 20:
cr = 0.0
elif iters > 12:
cr = 0.05
elif iters > 6:
cr = 0.1
return cr
return real_clip_range
model = PPO('MlpPolicy', env, verbose=0, gamma=0.0, gae_lambda=0.65, clip_range=clip_range_schedule())
while True:
iters += 1
model.learn(total_timesteps=4096, reset_num_timesteps=True)

Related

Perceptron : Weight for each sample data , or one common weight

With Perception learning, I am really confused on initializing and updating weight. If I have a sample data that contains 2 inputs x0 and x1 and I have 80 rows of these 2 inputs, hence 80x2 matrix.
Do I need to initialize weight as a matrix of 80x2 or just 2 values w0 and w1 ? Is final goal of perceptron learning is to find 2 weights w0 and w1 which should fit for all 80 input sample rows ?
I have following code and my errors never get to 0, despite going up to 10,000 iterations.
x=input matrix of 80x2
y=output matrix of 80x1
n = number of iterations
w=[0.1,0.1]
learningRate = 0.1
for i in range(n):
expectedT = y.transpose();
xT = x.transpose()
prediction = np.dot (w,xT)
for i in range (len(x)):
if prediction[i] >= 0:
ypred[i] = 1
else:
ypred[i] = 0
error = expectedT - ypred
# updating the weights
w = np.add(w,learningRate*(np.dot(error,x)))
globalError = globalError + np.square(error)
For each feature you will have one weight. Thus you have two features and two weights. It also helps to introduce a bias which adds another weight. For more information about bias check this Role of Bias in Neural Networks. The weights indeed should learn how to fit the sample data best. Depending on the data this can mean that you will never reach error of 0. For example a single layer perceptron can not learn an XOR gate when using a monotonic activation function. (solving XOR with single layer perceptron).
For your example I would recommend two things. Introducing a bias and stopping the training when the error is below a certain threshold or if error is 0 for example.
I completed your example to learn a logical AND gate:
# AND input and output
x = np.array([[0,0],[0,1],[1,0],[1,1]])
y = np.array([0,1,1,1])
n = 1000
w=[0.1,0.1,0.1]
learningRate = 0.01
globalError = 0
def predict(X):
prediction = np.dot(w[0:2],X) + w[2]
ypred = np.zeros(len(y))
for i in range (len(y)):
if prediction[i] >= 0:
ypred[i] = 1
else:
ypred[i] = 0
return ypred
for i in range(n):
expectedT = y.transpose();
xT = x.transpose()
ypred = predict(xT)
error = expectedT - ypred
if sum(error) == 0:
break
# updating the weights
w[0:2] = np.add(w[0:2],learningRate*(np.dot(error,x)))
w[2] += learningRate*sum(error)
globalError = globalError + np.square(error)
After the training the error is 0
print(error)
# [0. 0. 0. 0.]
And the weights are as follows
print(w)
#[0.1, 0.1, -0.00999999999999999]
The perceptron can be used now as AND gate:
predict(x.transpose())
#array([0., 1., 1., 1.])
Hope that helps

Why is neural net accuracy staying the same?

I have increased epochs from 10 to 15, yet that had no effect on accuracy. Both times the accuracy was 49.3% with a loss of 1.0.
Any idea why it might be behaving like this? I'm new to TensorFlow and deep learning.
Here's the training method:
def train_neural_network(x):
prediction = neural_network_model(x)
cost = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(logits=prediction,labels=y) )
optimizer = tf.train.AdamOptimizer(learning_rate=0.001).minimize(cost)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
try:
epoch = int(open(tf_log,'r').read().split('\n')[-2]) + 1
print('STARTING:',epoch)
except:
epoch = 1
# this will track epochs using a log file
while epoch <= n_epochs:
if epoch != 1:
saver.restore(sess,"./model.ckpt")
epoch_loss = 1
with open('lexicon-2500-2638.pickle','rb') as f:
lexicon = pickle.load(f)
print("lexicon length: ", len(lexicon))
with open('train_set_shuffled.csv', buffering=20000, encoding='latin-1') as f:
batch_x = []
batch_y = []
batches_run = 0
for line in f:
label = line.split(':::')[0]
tweet = line.split(':::')[1]
current_words = word_tokenize(tweet.lower())
current_words = [lemmatizer.lemmatize(i) for i in current_words]
features = np.zeros(len(lexicon))
for word in current_words:
if word.lower() in lexicon:
index_value = lexicon.index(word.lower())
features[index_value] += 1
line_x = list(features)
line_y = eval(label)
batch_x.append(line_x)
batch_y.append(line_y)
if len(batch_x) >= batch_size:
_, c = sess.run([optimizer, cost], feed_dict={x: np.array(batch_x),
y: np.array(batch_y)})
epoch_loss += c
batch_x = []
batch_y = []
batches_run += 1
print('Batch run:',batches_run,'/',total_batches,'| Epoch:',epoch,'| Batch Loss:',c,)
saver.save(sess, "./model.ckpt")
print('Epoch',epoch,'completed out of',n_epochs,'loss:',epoch_loss)
with open(tf_log,'a') as f:
f.write(str(epoch) + '\n')
epoch += 1
train_neural_network(x)
There's a whole host of parameters, other than # of epochs, that contribute to the efficiency of a neural net.
As a first pass attempt, you might want to try experimenting with:
Different batch sizes
Different architectures of your neural net (i.e, increasing # of layers).
Different feature transformations (i.e, perhaps try stemming instead of lemmatizing)
There's a lot more you can do, and I encourage you to check out this primer
Good luck! :)

Use neural network to learn a square wave function

Out of curiosity, I am trying to build a simple fully connected NN using tensorflow to learn a square wave function such as the following one:
Therefore the input is a 1D array of x value (as the horizontal axis), and the output is a binary scalar value. I used tf.nn.sparse_softmax_cross_entropy_with_logits as loss function, and tf.nn.relu as activation. There are 3 hidden layers (100*100*100) and a single input node and output node. The input data are generated to match the above wave shape and therefore the data size is not a problem.
However, the trained model seems to fail completed, predicting for the negative class always.
So I am trying to figure out why this happened. Whether the NN configuration is suboptimal, or it is due to some mathematical flaw in NN beneath the surface (though I think NN should be able to imitate any function).
Thanks.
As per suggestions in the comment section, here is the full code. One thing I noticed saying wrong earlier is, there were actually 2 output nodes (due to 2 output classes):
"""
See if neural net can find piecewise linear correlation in the data
"""
import time
import os
import tensorflow as tf
import numpy as np
def generate_placeholder(batch_size):
x_placeholder = tf.placeholder(tf.float32, shape=(batch_size, 1))
y_placeholder = tf.placeholder(tf.float32, shape=(batch_size))
return x_placeholder, y_placeholder
def feed_placeholder(x, y, x_placeholder, y_placeholder, batch_size, loop):
x_selected = [[None]] * batch_size
y_selected = [None] * batch_size
for i in range(batch_size):
x_selected[i][0] = x[min(loop*batch_size, loop*batch_size % len(x)) + i, 0]
y_selected[i] = y[min(loop*batch_size, loop*batch_size % len(y)) + i]
feed_dict = {x_placeholder: x_selected,
y_placeholder: y_selected}
return feed_dict
def inference(input_x, H1_units, H2_units, H3_units):
with tf.name_scope('H1'):
weights = tf.Variable(tf.truncated_normal([1, H1_units], stddev=1.0/2), name='weights')
biases = tf.Variable(tf.zeros([H1_units]), name='biases')
a1 = tf.nn.relu(tf.matmul(input_x, weights) + biases)
with tf.name_scope('H2'):
weights = tf.Variable(tf.truncated_normal([H1_units, H2_units], stddev=1.0/H1_units), name='weights')
biases = tf.Variable(tf.zeros([H2_units]), name='biases')
a2 = tf.nn.relu(tf.matmul(a1, weights) + biases)
with tf.name_scope('H3'):
weights = tf.Variable(tf.truncated_normal([H2_units, H3_units], stddev=1.0/H2_units), name='weights')
biases = tf.Variable(tf.zeros([H3_units]), name='biases')
a3 = tf.nn.relu(tf.matmul(a2, weights) + biases)
with tf.name_scope('softmax_linear'):
weights = tf.Variable(tf.truncated_normal([H3_units, 2], stddev=1.0/np.sqrt(H3_units)), name='weights')
biases = tf.Variable(tf.zeros([2]), name='biases')
logits = tf.matmul(a3, weights) + biases
return logits
def loss(logits, labels):
labels = tf.to_int32(labels)
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=labels, logits=logits, name='xentropy')
return tf.reduce_mean(cross_entropy, name='xentropy_mean')
def inspect_y(labels):
return tf.reduce_sum(tf.cast(labels, tf.int32))
def training(loss, learning_rate):
tf.summary.scalar('lost', loss)
optimizer = tf.train.GradientDescentOptimizer(learning_rate)
global_step = tf.Variable(0, name='global_step', trainable=False)
train_op = optimizer.minimize(loss, global_step=global_step)
return train_op
def evaluation(logits, labels):
labels = tf.to_int32(labels)
correct = tf.nn.in_top_k(logits, labels, 1)
return tf.reduce_sum(tf.cast(correct, tf.int32))
def run_training(x, y, batch_size):
with tf.Graph().as_default():
x_placeholder, y_placeholder = generate_placeholder(batch_size)
logits = inference(x_placeholder, 100, 100, 100)
Loss = loss(logits, y_placeholder)
y_sum = inspect_y(y_placeholder)
train_op = training(Loss, 0.01)
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
max_steps = 10000
for step in range(max_steps):
start_time = time.time()
feed_dict = feed_placeholder(x, y, x_placeholder, y_placeholder, batch_size, step)
_, loss_val = sess.run([train_op, Loss], feed_dict = feed_dict)
duration = time.time() - start_time
if step % 100 == 0:
print('Step {}: loss = {:.2f} {:.3f}sec'.format(step, loss_val, duration))
x_test = np.array(range(1000)) * 0.001
x_test = np.reshape(x_test, (1000, 1))
_ = sess.run(logits, feed_dict={x_placeholder: x_test})
print(min(_[:, 0]), max(_[:, 0]), min(_[:, 1]), max(_[:, 1]))
print(_)
if __name__ == '__main__':
population = 10000
input_x = np.random.rand(population)
input_y = np.copy(input_x)
for bin in range(10):
print(bin, bin/10, 0.5 - 0.5*(-1)**bin)
input_y[input_x >= bin/10] = 0.5 - 0.5*(-1)**bin
batch_size = 1000
input_x = np.reshape(input_x, (population, 1))
run_training(input_x, input_y, batch_size)
Sample output shows that the model always prefer the first class over the second, as shown by min(_[:, 0]) > max(_[:, 1]), i.e. the minimum logit output for the first class is higher than the maximum logit output for the second class, for a sample size of population.
My mistake. The problem occurred in the line:
for i in range(batch_size):
x_selected[i][0] = x[min(loop*batch_size, loop*batch_size % len(x)) + i, 0]
y_selected[i] = y[min(loop*batch_size, loop*batch_size % len(y)) + i]
Python is mutating the whole list of x_selected to the same value. Now this code issue is resolved. The fix is:
x_selected = np.zeros((batch_size, 1))
y_selected = np.zeros((batch_size,))
for i in range(batch_size):
x_selected[i, 0] = x[(loop*batch_size + i) % x.shape[0], 0]
y_selected[i] = y[(loop*batch_size + i) % y.shape[0]]
After this fix, the model is showing more variation. It currently outputs class 0 for x <= 0.5 and class 1 for x > 0.5. But this is still far from ideal.
So after changing the network configuration to 100 nodes * 4 layers, after 1 million training steps (batch size = 100, sample size = 10 million), the model is performing very well showing only errors at the edges when y flips.
Therefore this question is closed.
You essentially try to learn a periodic function and the function is highly non-linear and non-smooth. So it is NOT simple as it looks like. In short, a better representation of the input feature helps.
Suppose your have a period T = 2, f(x) = f(x+2).
For a reduced problem when input/output are integers, your function is then f(x) = 1 if x is odd else -1. In this case, your problem would be reduced to this discussion in which we train a Neural Network to distinguish between odd and even numbers.
I guess the second bullet in that post should help (even for the general case when inputs are float numbers).
Try representing the numbers in binary using a fixed length precision.
In our reduced problem above, it's easy to see that the output is determined iff the least-significant bit is known.
decimal binary -> output
1: 0 0 1 -> 1
2: 0 1 0 -> -1
3: 0 1 1 -> 1
...
I created the model and the structure for the problem of recognizing odd/even numbers in here.
If you abstract the fact that:
decimal binary -> output
1: 0 0 1 -> 1
2: 0 1 0 -> -1
3: 0 1 1 -> 1
Is almost equivalent to:
decimal binary -> output
1: 0 0 1 -> 1
2: 0 1 0 -> 0
3: 0 1 1 -> 1
You may update the code to fit your need.

Neural Network MNIST: Backpropagation is correct, but training/test accuracy very low

I am building a neural network to learn to recognize handwritten digits from MNIST. I have confirmed that backpropagation calculates the gradients perfectly (gradient checking gives error < 10 ^ -10).
It appears that no matter how I train the weights, the cost function always tends towards around 3.24-3.25 (never below that, just approaching from above) and the training/test set accuracy is very low (around 11% for the test set). It appears that the h values in the end are all very close to 0.1 and to each other.
I cannot find why my program cannot produce better results. I was wondering if anyone could maybe take a look at my code and please tell me any reasons for this occurring. Thank you so much for all your help, I really appreciate it!
Here is my Python code:
import numpy as np
import math
from tensorflow.examples.tutorials.mnist import input_data
# Neural network has four layers
# The input layer has 784 nodes
# The two hidden layers each have 5 nodes
# The output layer has 10 nodes
num_layer = 4
num_node = [784,5,5,10]
num_output_node = 10
# 30000 training sets are used
# 10000 test sets are used
# Can be adjusted
Ntrain = 30000
Ntest = 10000
# Sigmoid Function
def g(X):
return 1/(1 + np.exp(-X))
# Forwardpropagation
def h(W,X):
a = X
for l in range(num_layer - 1):
a = np.insert(a,0,1)
z = np.dot(a,W[l])
a = g(z)
return a
# Cost Function
def J(y, W, X, Lambda):
cost = 0
for i in range(Ntrain):
H = h(W,X[i])
for k in range(num_output_node):
cost = cost + y[i][k] * math.log(H[k]) + (1-y[i][k]) * math.log(1-H[k])
regularization = 0
for l in range(num_layer - 1):
for i in range(num_node[l]):
for j in range(num_node[l+1]):
regularization = regularization + W[l][i+1][j] ** 2
return (-1/Ntrain * cost + Lambda / (2*Ntrain) * regularization)
# Backpropagation - confirmed to be correct
# Algorithm based on https://www.coursera.org/learn/machine-learning/lecture/1z9WW/backpropagation-algorithm
# Returns D, the value of the gradient
def BackPropagation(y, W, X, Lambda):
delta = np.empty(num_layer-1, dtype = object)
for l in range(num_layer - 1):
delta[l] = np.zeros((num_node[l]+1,num_node[l+1]))
for i in range(Ntrain):
A = np.empty(num_layer-1, dtype = object)
a = X[i]
for l in range(num_layer - 1):
A[l] = a
a = np.insert(a,0,1)
z = np.dot(a,W[l])
a = g(z)
diff = a - y[i]
delta[num_layer-2] = delta[num_layer-2] + np.outer(np.insert(A[num_layer-2],0,1),diff)
for l in range(num_layer-2):
index = num_layer-2-l
diff = np.multiply(np.dot(np.array([W[index][k+1] for k in range(num_node[index])]), diff), np.multiply(A[index], 1-A[index]))
delta[index-1] = delta[index-1] + np.outer(np.insert(A[index-1],0,1),diff)
D = np.empty(num_layer-1, dtype = object)
for l in range(num_layer - 1):
D[l] = np.zeros((num_node[l]+1,num_node[l+1]))
for l in range(num_layer-1):
for i in range(num_node[l]+1):
if i == 0:
for j in range(num_node[l+1]):
D[l][i][j] = 1/Ntrain * delta[l][i][j]
else:
for j in range(num_node[l+1]):
D[l][i][j] = 1/Ntrain * (delta[l][i][j] + Lambda * W[l][i][j])
return D
# Neural network - this is where the learning/adjusting of weights occur
# W is the weights
# learn is the learning rate
# iterations is the number of iterations we pass over the training set
# Lambda is the regularization parameter
def NeuralNetwork(y, X, learn, iterations, Lambda):
W = np.empty(num_layer-1, dtype = object)
for l in range(num_layer - 1):
W[l] = np.random.rand(num_node[l]+1,num_node[l+1])/100
for k in range(iterations):
print(J(y, W, X, Lambda))
D = BackPropagation(y, W, X, Lambda)
for l in range(num_layer-1):
W[l] = W[l] - learn * D[l]
print(J(y, W, X, Lambda))
return W
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
# Training data, read from MNIST
inputpix = []
output = []
for i in range(Ntrain):
inputpix.append(2 * np.array(mnist.train.images[i]) - 1)
output.append(np.array(mnist.train.labels[i]))
np.savetxt('input.txt', inputpix, delimiter=' ')
np.savetxt('output.txt', output, delimiter=' ')
# Train the weights
finalweights = NeuralNetwork(output, inputpix, 2, 5, 1)
# Test data
inputtestpix = []
outputtest = []
for i in range(Ntest):
inputtestpix.append(2 * np.array(mnist.test.images[i]) - 1)
outputtest.append(np.array(mnist.test.labels[i]))
np.savetxt('inputtest.txt', inputtestpix, delimiter=' ')
np.savetxt('outputtest.txt', outputtest, delimiter=' ')
# Determine the accuracy of the training data
count = 0
for i in range(Ntrain):
H = h(finalweights,inputpix[i])
print(H)
for j in range(num_output_node):
if H[j] == np.amax(H) and output[i][j] == 1:
count = count + 1
print(count/Ntrain)
# Determine the accuracy of the test data
count = 0
for i in range(Ntest):
H = h(finalweights,inputtestpix[i])
print(H)
for j in range(num_output_node):
if H[j] == np.amax(H) and outputtest[i][j] == 1:
count = count + 1
print(count/Ntest)
Your network is tiny, 5 neurons make it basically a linear model. Increase it to 256 per layer.
Notice, that trivial linear model has 768 * 10 + 10 (biases) parameters, adding up to 7690 floats. Your neural network on the other hand has 768 * 5 + 5 + 5 * 5 + 5 + 5 * 10 + 10 = 3845 + 30 + 60 = 3935. In other words despite being nonlinear neural network, it is actualy a simpler model than a trivial logistic regression applied to this problem. And logistic regression obtains around 11% error on its own, thus you cannot really expect to beat it. Of course this is not a strict argument, but should give you some intuition for why it should not work.
Second issue is related to other hyperparameters, you seem to be using:
huge learning rate (is it 2?) it should be more of order 0.0001
very little training iterations (are you just executing 5 epochs?)
your regularization parameter is huge (it is set to 1), so your network is heavily penalised for learning anything, again - change it to something order of magnitude smaller
The NN architecture is most likely under-fitting. Maybe, the learning rate is high/low. Or there are most issues with the regularization parameter.

Batch Training Accuracy is always multiple of 10%

So I am training a CNN and compute the training accuracy for each batch. Most of the it gives out 100% batch training accuracy. which I though was okay because I'm testing my model against the data I trained it with. But at some iterations, I get a 90% or 90% batch training accuracy. And worst, sometimes it goes down to 0% real quick and bounces back to 100% batch training accuracy. And I used the algorithm in https://github.com/Hvass-Labs/TensorFlow-Tutorials/blob/master/04_Save_Restore.ipynb and they also computed the batch training accuracy but they don't get the same results I get. They started out with around 80% batch training accuracy and observed a gradual increase until 98%. Why is this?
I was suspecting that my network is overfitting.
Here is my exact code:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
import tensorflow as tf
import pyfftw
from scipy import signal
import xlrd
from tensorflow.python.tools import freeze_graph
from tensorflow.python.tools import optimize_for_inference_lib
import time
from datetime import timedelta
import math
import os
from sklearn.metrics import confusion_matrix
##matplotlib inline
plt.style.use('ggplot')
## define funtions
def read_data(file_path):
## column_names = ['user-id','activity','timestamp', 'x-axis', 'y-axis', 'z-axis']
column_names = ['activity','timestamp', 'Ax', 'Ay', 'Az', 'Gx', 'Gy', 'Gz', 'Mx', 'My', 'Mz'] ## 3 sensors
data = pd.read_csv(file_path,header = None, names = column_names)
return data
def feature_normalize(dataset):
mu = np.mean(dataset,axis = 0)
sigma = np.std(dataset,axis = 0)
return (dataset - mu)/sigma
def plot_axis(ax, x, y, title):
ax.plot(x, y)
ax.set_title(title)
ax.xaxis.set_visible(False)
ax.set_ylim([min(y) - np.std(y), max(y) + np.std(y)])
ax.set_xlim([min(x), max(x)])
ax.grid(True)
def plot_activity(activity,data):
fig, (ax0, ax1, ax2) = plt.subplots(nrows = 3, figsize = (15, 10), sharex = True)
plot_axis(ax0, data['timestamp'], data['Ax'], 'x-axis')
plot_axis(ax1, data['timestamp'], data['Ay'], 'y-axis')
plot_axis(ax2, data['timestamp'], data['Az'], 'z-axis')
plt.subplots_adjust(hspace=0.2)
fig.suptitle(activity)
plt.subplots_adjust(top=0.90)
plt.show()
def windows(data, size):
start = 0
while start < data.count():
yield start, start + size
start += (size / 2)
def segment_signal(data, window_size = None, num_channels=None): # edited
segments = np.empty((0,window_size,num_channels)) #change from 3 to 9 channels for AGM fusion #use variable num_channels=9
labels = np.empty((0))
for (n_start, n_end) in windows(data['timestamp'], window_size):
## x = data["x-axis"][start:end]
## y = data["y-axis"][start:end]
## z = data["z-axis"][start:end]
n_start = int(n_start)
n_end = int(n_end)
Ax = data["Ax"][n_start:n_end]
Ay = data["Ay"][n_start:n_end]
Az = data["Az"][n_start:n_end]
Gx = data["Gx"][n_start:n_end]
Gy = data["Gy"][n_start:n_end]
Gz = data["Gz"][n_start:n_end]
Mx = data["Mx"][n_start:n_end]
My = data["My"][n_start:n_end]
Mz = data["Mz"][n_start:n_end]
if(len(dataset['timestamp'][n_start:n_end]) == window_size): # include only windows with size of 90
segments = np.vstack([segments,np.dstack([Ax,Ay,Az,Gx,Gy,Gz,Mx,My,Mz])])
labels = np.append(labels,stats.mode(data["activity"][n_start:n_end])[0][0])
return segments, labels
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev = 0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.0, shape = shape)
return tf.Variable(initial)
def depthwise_conv2d(x, W):
return tf.nn.depthwise_conv2d(x,W, [1, 1, 1, 1], padding='VALID')
def apply_depthwise_conv(x,weights,biases):
return tf.nn.relu(tf.add(depthwise_conv2d(x, weights),biases))
def apply_max_pool(x,kernel_size,stride_size):
return tf.nn.max_pool(x, ksize=[1, 1, kernel_size, 1],
strides=[1, 1, stride_size, 1], padding='VALID')
#------------------------get dataset----------------------#
## run shoaib_dataset.py to generate dataset_shoaib_total.txt
## get data from dataset_shoaib_total.txt
dataset = read_data('dataset_shoaib_total.txt')
#--------------------preprocessing------------------------#
dataset['Ax'] = feature_normalize(dataset['Ax'])
dataset['Ay'] = feature_normalize(dataset['Ay'])
dataset['Az'] = feature_normalize(dataset['Az'])
dataset['Gx'] = feature_normalize(dataset['Gx'])
dataset['Gy'] = feature_normalize(dataset['Gy'])
dataset['Gz'] = feature_normalize(dataset['Gz'])
dataset['Mx'] = feature_normalize(dataset['Mx'])
dataset['My'] = feature_normalize(dataset['My'])
dataset['Mz'] = feature_normalize(dataset['Mz'])
###--------------------plot activity data----------------#
##for activity in np.unique(dataset["activity"]):
## subset = dataset[dataset["activity"] == activity][:180]
## plot_activity(activity,subset)
#------------------fixed hyperparameters--------------------#
window_size = 200 #from 90 #FIXED at 4 seconds
#----------------input hyperparameters------------------#
input_height = 1
input_width = window_size
num_labels = 6
num_channels = 9 #from 3 channels #9 channels for AGM
#-------------------sliding time window----------------#
segments, labels = segment_signal(dataset, window_size=window_size, num_channels=num_channels)
labels = np.asarray(pd.get_dummies(labels), dtype = np.int8)
reshaped_segments = segments.reshape(len(segments), (window_size*num_channels)) #use variable num_channels instead of constant 3 channels
#------------divide data into test and training set-----------#
train_test_split = np.random.rand(len(reshaped_segments)) < 0.80
train_x_init = reshaped_segments[train_test_split]
train_y_init = labels[train_test_split]
test_x = reshaped_segments[~train_test_split]
test_y = labels[~train_test_split]
train_validation_split = np.random.rand(len(train_x_init)) < 0.80
train_x = train_x_init[train_validation_split]
train_y = train_y_init[train_validation_split]
validation_x = train_x_init[~train_validation_split]
validation_y = train_y_init[~train_validation_split]
#---------------training hyperparameters----------------#
batch_size = 10
kernel_size = 60 #from 60 #optimal 2
depth = 15 #from 60 #optimal 15
num_hidden = 1000 #from 1000 #optimal 80
learning_rate = 0.0001
training_epochs = 8
total_batches = train_x.shape[0] ##// batch_size
#---------define placeholders for input----------#
X = tf.placeholder(tf.float32, shape=[None,input_width * num_channels], name="input")
X_reshaped = tf.reshape(X,[-1,input_height,input_width,num_channels])
Y = tf.placeholder(tf.float32, shape=[None,num_labels])
#---------------------perform convolution-----------------#
# first convolutional layer
c_weights = weight_variable([1, kernel_size, num_channels, depth])
c_biases = bias_variable([depth * num_channels])
c = apply_depthwise_conv(X_reshaped,c_weights,c_biases)
p = apply_max_pool(c,20,2)
# second convolutional layer
c2_weights = weight_variable([1, 6,depth*num_channels,depth//10])
c2_biases = bias_variable([(depth*num_channels)*(depth//10)])
c = apply_depthwise_conv(p,c2_weights,c2_biases)
#--------------flatten data for fully connected layers----------#
shape = c.get_shape().as_list()
c_flat = tf.reshape(c, [-1, shape[1] * shape[2] * shape[3]])
#------------fully connected layers----------------#
f_weights_l1 = weight_variable([shape[1] * shape[2] * depth * num_channels * (depth//10), num_hidden])
f_biases_l1 = bias_variable([num_hidden])
f = tf.nn.tanh(tf.add(tf.matmul(c_flat, f_weights_l1),f_biases_l1))
#----------------------dropout------------------#
keep_prob = tf.placeholder(tf.float32)
drop_layer = tf.nn.dropout(f, keep_prob)
#----------------------softmax layer----------------#
out_weights = weight_variable([num_hidden, num_labels])
out_biases = bias_variable([num_labels])
y_ = tf.nn.softmax(tf.add(tf.matmul(drop_layer, out_weights),out_biases), name="y_")
#-----------------loss optimization-------------#
loss = -tf.reduce_sum(Y * tf.log(y_))
optimizer = tf.train.AdamOptimizer(learning_rate = learning_rate).minimize(loss)
#-----------------compute accuracy---------------#
correct_prediction = tf.equal(tf.argmax(y_,1), tf.argmax(Y,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
cost_history = np.empty(shape=[1],dtype=float)
saver = tf.train.Saver()
session = tf.Session()
session.run(tf.global_variables_initializer())
#-------------early stopping-----------------#
# Best validation accuracy seen so far.
best_validation_accuracy = 0.0
# Iteration-number for last improvement to validation accuracy.
last_improvement = 0
# Stop optimization if no improvement found in this many iterations.
require_improvement = 1000
# Counter for total number of iterations performed so far.
total_iterations = 0
def validation_accuracy():
return session.run(accuracy, feed_dict={X: validation_x, Y: validation_y, keep_prob: 1.0})
def next_batch(b, batch_size, train_x, train_y):
##for b in range(total_batches):
offset = (b * batch_size) % (train_y.shape[0] - batch_size)
batch_x = train_x[offset:(offset + batch_size), :]
batch_y = train_y[offset:(offset + batch_size), :]
return batch_x, batch_y
def optimize(num_iterations):
# Ensure we update the global variables rather than local copies.
global total_iterations
global best_validation_accuracy
global last_improvement
# Start-time used for printing time-usage below.
start_time = time.time()
for i in range(num_iterations):
# Increase the total number of iterations performed.
# It is easier to update it in each iteration because
# we need this number several times in the following.
total_iterations += 1
# Get a batch of training examples.
# x_batch now holds a batch of images and
# y_true_batch are the true labels for those images.
##x_batch, y_true_batch = data.train.next_batch(train_batch_size)
x_batch, y_true_batch = next_batch(i, batch_size, train_x, train_y)
# Put the batch into a dict with the proper names
# for placeholder variables in the TensorFlow graph.
feed_dict_train = {X: x_batch,
Y: y_true_batch, keep_prob: 0.5}
# Run the optimizer using this batch of training data.
# TensorFlow assigns the variables in feed_dict_train
# to the placeholder variables and then runs the optimizer.
session.run(optimizer, feed_dict=feed_dict_train)
# Print status every 100 iterations and after last iteration.
if (total_iterations % 100 == 0) or (i == (num_iterations - 1)):
# Calculate the accuracy on the training-batch.
acc_train = session.run(accuracy, feed_dict={X: x_batch,
Y: y_true_batch, keep_prob: 1.0})
# Calculate the accuracy on the validation-set.
# The function returns 2 values but we only need the first.
##acc_validation, _ = validation_accuracy()
acc_validation = validation_accuracy()
# If validation accuracy is an improvement over best-known.
if acc_validation > best_validation_accuracy:
# Update the best-known validation accuracy.
best_validation_accuracy = acc_validation
# Set the iteration for the last improvement to current.
last_improvement = total_iterations
# Save all variables of the TensorFlow graph to file.
saver.save(sess=session, save_path="../shoaib-har_agm_es.ckpt")
# A string to be printed below, shows improvement found.
improved_str = '*'
else:
# An empty string to be printed below.
# Shows that no improvement was found.
improved_str = ''
# Status-message for printing.
msg = "Iter: {0:>6}, Train-Batch Accuracy: {1:>6.1%}, Validation Acc: {2:>6.1%} {3}"
# Print it.
print(msg.format(i + 1, acc_train, acc_validation, improved_str))
# If no improvement found in the required number of iterations.
if total_iterations - last_improvement > require_improvement:
print("No improvement found in a while, stopping optimization.")
# Break out from the for-loop.
break
# Ending time.
end_time = time.time()
# Difference between start and end-times.
time_dif = end_time - start_time
# Print the time-usage.
print("Time usage: " + str(timedelta(seconds=int(round(time_dif)))))
optimize(10000)
With the output:
What exactly is training accuracy? Is it even computed? Or do you compute the training accuracy on the entire training data and not just the batch you trained your network with?
Here I printed the results such that it prints out the batch training accuracy and the training accuracy on the entire dataset set for every multiples of 20 iterations.
The data is divided to 3 sets: train, validation and test.
Batch training accuracy is computed on the train set (the difference between the label and the prediction).
Validation accuracy is the accuracy on the validation set.
The batch accuracy can be computed just after a forward pass in the network. The number of samples in one forward pass is the batch size. It is just a way to train models faster (mini-batch gradient descent)
Overfitting is when the model works really good on known data (training set) but performs poorly on new data.
As to the 10% multiples, it is just the printing format you are using.

Resources