I have a Docker image with an application server running in it.
When I'm running in a development environment, I want to run a database server within the same Docker image.
However, in production, I want to use my cloud provider's database service to host my database server.
What is the best (preferably officially supported) way to enable this distinction?
You Don't
You don't run the DB in the same container. You run it in a separate container next to your application container (Probably with docker-compose, but not required)
You run the same version as the cloud provider (or as close as you can get because they will no doubt configure it specifically for their env)
How should applications be scripted/automatically deployed when in LXD containers?
For example is best way to deploy applications in LXD containers to use a bash script (which deploys an application)? How to execute this bash script inside the container by executing a command on the host?
Are there any tools/methods of doing this in a similar way to Docker recipes?
In my case, I use Ansible to:
build the LXD containers (web, database, redis for example).
connect to the containers and deploy the services and code needed.
you can build your own images for example with the services and/or code already deployed and build specific containers from this images.
I was doing this from before LXD had Ansible support (Ansible 2.2) i prefer to use ssh instead of lxd connection, when i connect to the containers to deploy services/code. they comes with a profile where i had setup my ssh public key (to have direct ssh connection by keys ... no passwords)
Take a look at my open source project on bitbucket devops_lxd_containers It includes:
Scripts to build lxd image templates including Apache, tomcat, haproxy.
Scripts to demonstrate custom application image builds such as Apache hosting and key/value content and haproxy configured as a router.
Code to launch the containers and map ports so they are accessible to the larger network
Code to configure haproxy as layer 7 proxy to route http requests between boxes and containers based on uri prefix routing. Based on where it previously deployed and mapped ports.
At the higher level it accepts a data drive spec and will deploy an entire environment compose of many containers spread across many hosts and hook them all up to act as a cohesive whole via a layer 7 proxy.
Extensive documentation showing how I accomplished each major step using code snippets before automating.
Code to support zero-outage upgrades using the layer7 ability to gracefully bleed off old connections while accepting new connections at the new layer.
The entire system is built on the premise that image building is best done in layers. We build a updated Ubuntu image. From it we build a hardened Ubuntu image. From it we build a basic Apache image. From it we build an application specific image like our apacheKV sample. The goal is to never rebuild any more than once and to re-use the common functionality such as the basicJDK as the source for all JDK dependent images so we can avoid having duplicate code in any location. I have strived to keep Image or template creation completely separate from deployment and port mapping. The exception is that I could not complete creation of the layer 7 routing image until we knew everything about how other images would be mapped.
I've been using Hashicorp Packer with the ansible provisioner using ansible_connection = lxd
Some notes here for constructing a template
When iterating through local files on your host system you may need to be using ansible_connection = local (e.g for stat & friends)
Using local_action in ansible with the lxd connection is still
action inside the container when using stat (but not with include_vars & lookup function for files)
Using lots of debug messages in Ansible is helpful to know which local environment ansible is actually operating in.
I'm surprised no one here mentioned Canonicals own tool for managing LXD.
https://juju.is
it is super simple, well supported, and the only caveat is it requires you turn off ipv6 at the LXD/LXC side of things (in the network bridge)
snap install juju --classic
juju bootstrap localhost
from there you can learn about juju models, deploy machines or prebaked images like ubuntuOS
juju deploy ubuntu
Kubernetes seems to be all about deploying containers to a cloud of clusters. What it doesn't seem to touch is development and staging environments (or such).
During development you want to be as close as possible to production environment with some important changes:
Deployed locally (or at least somewhere where you and only you can access)
Use latest source code on page refresh (supposing its a website; ideally page auto-refresh on local file save which can be done if you mount source code and use some stuff like Yeoman).
Similarly one may want a non-public environment to do continuous integration.
Does Kubernetes support such kind of development environment or is it something one has to build, hoping that during production it'll still work?
Update (2016-07-15)
With the release of Kubernetes 1.3, Minikube is now the recommended way to run Kubernetes on your local machine for development.
You can run Kubernetes locally via Docker. Once you have a node running you can launch a pod that has a simple web server and mounts a volume from your host machine. When you hit the web server it will read from the volume and if you've changed the file on your local disk it can serve the latest version.
We've been working on a tool to do this. Basic idea is you have remote Kubernetes cluster, effectively a staging environment, and then you run code locally and it gets proxied to the remote cluster. You get transparent network access, environment variables copied over, access to volumes... as close as feasible to remote environment, but with your code running locally and under your full control.
So you can do live development, say. Docs at http://telepresence.io
The sort of "hot reload" is something we have plans to add, but is not as easy as it could be today. However, if you're feeling adventurous you can use rsync with docker exec, kubectl exec, or osc exec (all do the same thing roughly) to sync a local directory into a container whenever it changes. You can use rsync with kubectl or osc exec like so:
# rsync using osc as netcat
$ rsync -av -e 'osc exec -ip test -- /bin/bash' mylocalfolder/ /tmp/remote/folder
I've just started with Skaffold
It's really useful to apply changes in the code automatically to a local cluster.
To deploy a local cluster, the best way is Minikube or just Docker for Mac and Windows, both includes a Kubernetes interface.
EDIT 2022: By now, there are obviously dozens of way to provision k8s, unlike 2015 when we started using it. kubeadm, microk8s, k3s, kube-spray, etc.
My advice: (If your cluster can't fit on your workstation/laptop,) Rent a Hetzner server for 40 euro a month, and run WSL2 if on Windows.
Set up k8s cluster on the remote machine (with any of the above, I prefer microk8s these days). Set up Docker and Telepresence on your local Linux/Mac/WSL2 env. Install kubectl and connect it to the remote cluster.
Telepresence will let you replace a remote pod with a local docker pod, with access to local files (hopefully the same git repo that's used to build the pod you're developing/replacing), and possibly nodemon (or other language-specific auto-source-code-reload system).
Write bash functions. I cannot stress this enough, this will save you hundreds of hours of time. If replacing the pod and starting to develop isn't one line / two words, then you're doing it not-well-enough.
2016 answer below:
Another great starting point is this Vagrant setup, esp. if your host OS is Windows. The obvious advantages being
quick and painless setup
easy to destroy / recreate the machine
implicit limit on resources
ability to test horizontal scaling by creating multiple nodes
The disadvantages - you need lot of RAM, and VirtualBox is VirtualBox... for better or worse.
A mixed advantage / disadvantage is mapping files through NFS. In our setup, we created two sets of RC definitions - one that just download a docker image of our application servers; the other with 7 extra lines that set up file mapping from HostOS -> Vagrant -> VirtualBox -> CoreOS -> Kubernetes pod; overwriting the source code from the Docker image.
The downside of this is NFS file cache - with it, it's problematic, without it, it's problematically slow. Even setting mount_options: 'nolock,vers=3,udp,noac' doesn't get rid of caching problems completely, but it works most of the time. Some Gulp tasks ran in a container can take 5 minutes when they take 8 seconds on host OS. A good compromise seems to be mount_options: 'nolock,vers=3,udp,ac,hard,noatime,nodiratime,acregmin=2,acdirmin=5,acregmax=15,acdirmax=15'.
As for automatic code reload, that's language specific, but we're happy with Django's devserver for Python, and Nodemon for Node.js. For frontend projects, you can of course do a lot with something like gulp+browserSync+watch, but for many developers it's not difficult to serve from Apache and just do traditional hard refresh.
We keep 4 sets of yaml files for Kubernetes. Dev, "devstable", stage, prod. The differences between those are
env variables explicitly setting the environment (dev/stage/prod)
number of replicas
devstable, stage, prod uses docker images
dev uses docker images, and maps NFS folder with source code over them.
It's very useful to create a lot of bash aliases and autocomplete - I can just type rec users and it will do kubectl delete -f ... ; kubectl create -f .... If I want the whole set up started, I type recfo, and it recreates a dozen services, pulling the latest docker images, importing the latest db dump from Staging env and cleaning up old Docker files to save space.
See https://github.com/kubernetes/kubernetes/issues/12278 for how to mount a volume from the host machine, the equivalent of:
docker run -v hostPath:ContainerPath
Having a nice local development feedback loop is a topic of rapid development in the Kubernetes ecosystem.
Breaking this question down, there are a few tools that I believe support this goal well.
Docker for Mac Kubernetes
Docker for Mac Kubernetes (Docker Desktop is the generic cross platform name) provides an excellent option for local development. For virtualization, it uses HyperKit which is built on the native Hypervisor framework in macOS instead of VirtualBox.
The Kubernetes feature was first released as beta on the edge channel in January 2018 and has come a long way since, becoming a certified Kubernetes in April 2018, and graduating to the stable channel in July 2018.
In my experience, it's much easier to work with than Minikube, particularly on macOS, and especially when it comes to issues like RBAC, Helm, hypervisor, private registry, etc.
Helm
As far as distributing your code and pulling updates locally, Helm is one of the most popular options. You can publish your applications via CI/CD as Helm charts (and also the underlying Docker images which they reference). Then you can pull these charts from your Helm chart registry locally and upgrade on your local cluster.
Azure Draft
You can also use a tool like Azure Draft to do simple local deploys and generate basic Helm charts from common language templates, sort of like buildpacks, to automate that piece of the puzzle.
Skaffold
Skaffold is like Azure Draft but more mature, much broader in scope, and made by Google. It has a very pluggable architecture. I think in the future more people will use it for local app development for Kubernetes.
If you have used React, I think of Skaffold as "Create React App for Kubernetes".
Kompose or Compose on Kubernetes
Docker Compose, while unrelated to Kubernetes, is one alternative that some companies use to provide a simple, easy, and portable local development environment analogous to the Kubernetes environment that they run in production. However, going this route means diverging your production and local development setups.
Kompose is a Docker Compose to Kubernetes converter. This could be a useful path for someone already running their applications as collections of containers locally.
Compose on Kubernetes is a recently open sourced (December 2018) offering from Docker which allows deploying Docker Compose files directly to a Kubernetes cluster via a custom controller.
Kubespary is helpful setting up local clusters. Mostly, I used vagrant based cluster on local machine.
Kubespray configuration
You could tweak these variables to have the desired kubernetes version.
The disadvantage of using minkube is that it spawns another virtual machine over your machine. Also, with latest minikube version it minimum requires to have 2 CPU and 2GB of RAM from your system, which makes it pretty heavy If you do not have the system with enough resources.
This is the reason I switched to microk8s for development on kubernetes and I love it. microk8s supports the DNS, local-storage, dashboard, istio, ingress and many more, everything you need to test your microservices.
It is designed to be a fast and lightweight upstream Kubernetes installation isolated from your local environment. This isolation is achieved by packaging all the binaries for Kubernetes, Docker.io, iptables, and CNI in a single snap package.
A single node kubernetes cluster can be installed within a minute with a single command:
snap install microk8s --classic
Make sure your system doesn't have any docker or kubelet service running. Microk8s will install all the required services automatically.
Please have a look at the following link to enable other add ons in microk8s.
https://github.com/ubuntu/microk8s
You can check the status using:
velotio#velotio-ThinkPad-E470:~/PycharmProjects/k8sClient$ microk8s.status
microk8s is running
addons:
ingress: disabled
dns: disabled
metrics-server: disabled
istio: disabled
gpu: disabled
storage: disabled
dashboard: disabled
registry: disabled
Have a look at https://github.com/okteto/okteto and Okteto Cloud.
The value proposition is to have the classical development experience than working locally, prior to docker, where you can have hot-reloads, incremental builds, debuggers... but all your local changes are immediately synchronized to a remote container. Remote containers give you access to the speed of cloud, allow a new level of collaboration, and integrates development in a production-like environment. Also, it eliminates the burden of local installations.
As specified before by Robert, minikube is the way to go.
Here is a quick guide to get started with minikube. The general steps are:
Install minikube
Create minikube cluster (in a Virtual Machine which can be VirtualBox or Docker for Mac or HyperV in case of Windows)
Create Docker image of your application file (by using Dockerfile)
Run the image by creating a Deployment
Create a service which exposes your application so that you can access it.
Here is the way I did a local set up for Kubernetes in Windows 10: -
Use Docker Desktop
Enable Kubernetes in the settings option of Docker Desktop
In Docker Desktop by default resource allocated for Memory is 2GB so to use Kubernetes
with Docker Desktop increase the memory.
Install kubectl as a client to talk to Kubernetes cluster
Run command kubectl config get-contexts to get the available cluster
Run command kubectl config use-context docker-desktop to use the docker desktop
Build a docker image of your application
Write a YAML file (descriptive method to create your deployment in Kubernetes) pointing
to the image created in above step cluster
Expose a service of type node port for each of your deployment to make it available to
the outside world
I want to build a "centralized" development environment using docker for my development team (4 PHP developers)
I have one big Linux server (lot of RAM, Disk, CPU) that runs the containers.
All developers have an account on this linux server (a home directory) where they put (git clone) the projects source code. Locally (on their desktop machine) they have access to their home directory via a network share.
I want that all developers are able to work at the same time on the same projects, but viewing the result of their code editing in different containers (or set of containers for project who use linking containers)
The docker PHP development environment by itself is not a problem. I already tried something like that with success : http://geoffrey.io/a-php-development-environment-with-docker.html
I can use fig, with a fig.yml at the root of each project source code, so each developer can do a fig up to launch the set of containers for a given project. I can even use a different FIG_PROJECT_NAME environment variable for each account so I suppose that 2 developer can fig up the same project and their will be no container names collisions
Does it make sense ?
But after, I don't really know how to dynamically giving access to the running containers : when running there will be typically a web server in a container mapped to a random port in the host. How can I setup a sort of "dynamic DNS" to point to the running container(s), accessible, let say, through a nginx reverse proxy (the vhost creation and destroy has to be dynamic too) ?
To summarize, the workflow I would like to have :
A developer ssh into the dev env (the big linux server).
from his home directory he goes into the project directory and do a fig up
a vhost is created in the nginx reverse proxy, pointing to the running container and a DNS entry (or /etc/hosts entry) is added that is the server_name of this previously generated vhost.
The source code is mounted into the container from a host directory (-v host/dir:container/dir, so the developer can edit any file while the container is running
The result can be viewed by accessing the vhost, for example :
randomly-generated-id.dev.example.org
when the changes are ok, the developper can do a git commit/push
then the dev do a fig stop which in turn delete the nginx reverse proxy corresponding vhost and also delete the dynamic DNS entry.
So, how would to do a setup like this ? I mentioned tool like fig but if you have any other suggestions ... but remember that I would like to keep a lightweight workflow (after all we are a small team :))
Thanks for your help.
Does it make sense ?
yes, that setup makes sense
I would suggest taking a look at one of these projects:
https://github.com/crosbymichael/skydock
https://github.com/progrium/registrator
https://github.com/bnfinet/docker-dns
They're all designed to create DNS entries for containers as they start. Then just point your DNS server at it and you should get a nice domain name every time someone starts up an environment (I don't think you'll need a nginx proxy). But you might also be interested in this approach: http://jasonwilder.com/blog/2014/03/25/automated-nginx-reverse-proxy-for-docker/
Now, there's an even better option for you: Traefik. It will act as a reverse proxy, listening on 80/443, and will differentiate by hostname. Then, it will forward traffic dynamically, based on labels applied to the containers.
Here is a good solution to your issue:
1) Setup Traefik to listen to the docker daemon, forwarding based on ports
2) Ensure the frontend app servers for your devs are on the same docker network as traefik
3) Set a wildcard dns entry point to your server. For example: *.localdev.example.com.
4) On each container, set the hostname in that wildcard namespace. For example: jsmith-dev1localdev.example.com. This would be specified in a docker label such as: traefik.frontend.rule=Host:jsmith-dev1localdev.example.com.
This would allow developers to dynamically forward traffic by domain to their own dev containers.
Yes, I'm aware this is a 3 year old question. It still comes up in 2018 first on google for "centralized docker development server" so I'm going to post this anyways for the help of those currently searching.
I want to migrate my current deploy to docker, it counts on a mongodb service, a redis service, a pg server and a rails app, I have created already a docker container for each but i have doubts when it comes to start and linking them. Under development I'm using fig but I think it was not meant to be used on production. In order to take my deployment to production level, what mechanism should I use to auto-start and link containers together? my deploy uses a single docker host that already runs Ubuntu so i can't use CoreOS.
Linknig containers in production is a tricky thing. It will hardwire the IP addresses of the dependent containers so if you ever need to restart a container or launch a replacement (like upgrading the version of mongodb) your rails app will not work out of the box with the new container and its new IP address.
This other answer explains some available alternatives to linking.
Regarding starting the containers, you can use any deployment tool to run the required docker commands (Capistrano can easily do that). After that, docker will restart running the containers after a reboot.
You might need a watcher process to restart containers if they die, just as you would have one for a normal rails app.
Services like Tutum and Dockerize.it can make this simpler. As far as I know, Tutum will not deploy to your servers. Dockerize.it will, but is very rough (disclaimer: I'm part of the team building it).
You can convert your fig configuration to CoreOS formatted systemd configuration files with fig2coreos. Google App Engine supports CoreOS, or you can run CoreOS on AWS or your cloud provider of choice. fig2coreos also supports deploying to CoreOS in Vagrant for local development.
CenturyLink (fig2coreos authors) have an example blog post here:
This blog post will show you how to bridge the gap between building
complex multi-container apps using Fig and deploying those
applications into a production CoreOS system.
EDIT: If you are constrained to an existing host OS you can use QEMU ("a generic and open source machine emulator and virtualizer") to host a CoreOS instance. Instructions are available from the CoreOS team.