How to use logistic regression on time series data? - time-series

My question is more theoretical and hope someone can help me.
I have socio-demographic data for 2007, 2010, 2011 and 2020 years from the statistical office. All of the variables are categorical, while the Dependent variable is binary. I want to explain dependence and think about using logistic regression.
However I have some doubts, should I treat this data as time series or I can just use it as usual?

Related

Logistic regression Machine Learning?

I have a dataset of 300 respondents (hours studied vs grade), I load the dataset in Excel run the data analysis add-in and run a linear regression. I get my results.
So the question is, Am I doing a Statistical Analysis or Am I doing Machine Learning? I know the question may seem simple but I think we should get some debate from this.
Maybe your question is better suited for Data Science as it is not a question related to app/program development. Running formulas in excel through an add on is not really considered anywhere close to "programming".
Statistical Analysis is when you take statistical metrics of your data, like mean, standard deviation, confidence intervall, p-value...
Supervised Machine Learning is when you try to classify or predict something. For these problemns you use features as input to the model in order to classify a class or predict a value.
In this case you are doing machine learning, because you use the hours studied feature to predict the student grade.
In the proper context, you're actually doing Statistical Analysis... (Which is part of Machine Learn

Prediction on Employee In Time Using Previous data

I am new in Machine Learning and Deep Learning.
I am working on one use-case if any one can help pls.
We have employee attendance dataset i want to predict the employee in Time for the future days.
What algorithm i can use that will best fit to my problem. need some guidance how i can proceed.
this is basic machine learning, if you looked it up just a bit, you would have found a solution, with that being said, you could use linear regression

What kind of classifier is used in the following scenario?

If I am building a weather predictor that will predict if it is will snow tomorrow, it is very easy to just straight away answer by saying "NO".
Obviously, if you evaluate such a classifier on every day of the year, it would be correct with an accuracy at 95% (considering that I build it and test it in a region where it snows very rarely).
Of course, that is such a stupid classifier even if it has an accuracy of 95% because it is obviously more important to predict if it will snow during the winter months (Jan & Feb) as opposed to any other months.
So, if I have a lot of features that I collect about the previous day to predict if it will snow the next day or not, considering that there will be a feature that says which month/week of the year it is, how can I weigh this particular feature and design the classifier to solve this practical problem?
Of course, that is such a stupid classifier even if it has an accuracy of 95% because it is obviously more important to predict if it will snow during the winter months (Jan & Feb) as opposed to any other months.
Accuracy might not be the best measurement to use in your case. Consider using precision, recall and F1 score.
how can I weigh this particular feature and design the classifier to solve this practical problem?
I don't think you should weight any particular feature in any way. You should let your algorithm do that and use cross validation to decide on the best parameters for your model, in order to also avoid overfitting.
If you say jan and feb are the most important months, consider only applying your model for those two months. If that's not possible, look into giving different weights to your classes (going to rain / not going to rain), based on their number. This question discusses that issue - the concept should be understandable regardless of your language of choice.

Are there similar datasets to MNIST?

I am doing research on machine learning. Now I want to test my algorithms with some famous datasets. Since I am a newbie in this area, I can't find other suitable datasets apart from MNIST. I thing MNIST is quite suitable for our research. Does anyone know some similar datasets with MNIST?
P.S I know another handwritten digit dataset that is often used, called USPS dataset. But I need a dataset with more training examples (typically more than 10000 and comparable to the number of training examples in MNIST), so USPS is out of my selection.
The machine learning archive (http://archive.ics.uci.edu/ml/) contains quite a variety of datasets including those, like MINIST, suitable for classification e.g. (http://archive.ics.uci.edu/ml/datasets/Skin+Segmentation).
I can't say which of them would be suitable without knowing what you're trying to demonstrate with your algorithm but anything inside the UCI archive is well known.
You can try Fashion MNIST or Kuzushiji MNIST that have very similar properties to MNIST, but a bit harder to predict. From Fashion MNIST's page:
Seriously, we are talking about replacing MNIST. Here are some good reasons:
MNIST is too easy. Convolutional nets can achieve 99.7% on MNIST. Classic machine learning algorithms can also achieve 97% easily. Check out our side-by-side benchmark for Fashion-MNIST vs. MNIST, and read "Most pairs of MNIST digits can be distinguished pretty well by just one pixel."
MNIST is overused. In this April 2017 Twitter thread, Google Brain research scientist and deep learning expert Ian Goodfellow calls for people to move away from MNIST.
MNIST can not represent modern CV tasks, as noted in this April 2017 Twitter thread, deep learning expert/Keras author François Chollet.

Best approach to what I think is a machine learning problem [closed]

Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed 4 years ago.
Improve this question
I am wanting some expert guidance here on what the best approach is for me to solve a problem. I have investigated some machine learning, neural networks, and stuff like that. I've investigated weka, some sort of baesian solution.. R.. several different things. I'm not sure how to really proceed, though. Here's my problem.
I have, or will have, a large collection of events.. eventually around 100,000 or so. Each event consists of several (30-50) independent variables, and 1 dependent variable that I care about. Some independent variables are more important than others in determining the dependent variable's value. And, these events are time relevant. Things that occur today are more important than events that occurred 10 years ago.
I'd like to be able to feed some sort of learning engine an event, and have it predict the dependent variable. Then, knowing the real answer for the dependent variable for this event (and all the events that have come along before), I'd like for that to train subsequent guesses.
Once I have an idea of what programming direction to go, I can do the research and figure out how to turn my idea into code. But my background is in parallel programming and not stuff like this, so I'd love to have some suggestions and guidance on this.
Thanks!
Edit: Here's a bit more detail about the problem that I'm trying to solve: It's a pricing problem. Let's say that I'm wanting to predict prices for a random comic book. Price is the only thing I care about. But there are lots of independent variables one could come up with. Is it a Superman comic, or a Hello Kitty comic. How old is it? What's the condition? etc etc. After training for a while, I want to be able to give it information about a comic book I might be considering, and have it give me a reasonable expected value for the comic book. OK. So comic books might be a bogus example. But you get the general idea. So far, from the answers, I'm doing some research on Support vector machines and Naive Bayes. Thanks for all of your help so far.
Sounds like you're a candidate for Support Vector Machines.
Go get libsvm. Read "A practical guide to SVM classification", which they distribute, and is short.
Basically, you're going to take your events, and format them like:
dv1 1:iv1_1 2:iv1_2 3:iv1_3 4:iv1_4 ...
dv2 1:iv2_1 2:iv2_2 3:iv2_3 4:iv2_4 ...
run it through their svm-scale utility, and then use their grid.py script to search for appropriate kernel parameters. The learning algorithm should be able to figure out differing importance of variables, though you might be able to weight things as well. If you think time will be useful, just add time as another independent variable (feature) for the training algorithm to use.
If libsvm can't quite get the accuracy you'd like, consider stepping up to SVMlight. Only ever so slightly harder to deal with, and a lot more options.
Bishop's Pattern Recognition and Machine Learning is probably the first textbook to look to for details on what libsvm and SVMlight are actually doing with your data.
If you have some classified data - a bunch of sample problems paired with their correct answers -, start by training some simple algorithms like K-Nearest-Neighbor and Perceptron and seeing if anything meaningful comes out of it. Don't bother trying to solve it optimally until you know if you can solve it simply or at all.
If you don't have any classified data, or not very much of it, start researching unsupervised learning algorithms.
It sounds like any kind of classifier should work for this problem: find the best class (your dependent variable) for an instance (your events). A simple starting point might be Naive Bayes classification.
This is definitely a machine learning problem. Weka is an excellent choice if you know Java and want a nice GPL lib where all you have to do is select the classifier and write some glue. R is probably not going to cut it for that many instances (events, as you termed it) because it's pretty slow. Furthermore, in R you still need to find or write machine learning libs, though this should be easy given that it's a statistical language.
If you believe that your features (independent variables) are conditionally independent (meaning, independent given the dependent variable), naive Bayes is the perfect classifier, as it is fast, interpretable, accurate and easy to implement. However, with 100,000 instances and only 30-50 features you can likely implement a fairly complex classification scheme that captures a lot of the dependency structure in your data. Your best bet would probably be a support vector machine (SMO in Weka) or a random forest (Yes, it's a silly name, but it helped random forest catch on.) If you want the advantage of easy interpretability of your classifier even at the expense of some accuracy, maybe a straight up J48 decision tree would work. I'd recommend against neural nets, as they're really slow and don't usually work any better in practice than SVMs and random forest.
The book Programming Collective Intelligence has a worked example with source code of a price predictor for laptops which would probably be a good starting point for you.
SVM's are often the best classifier available. It all depends on your problem and your data. For some problems other machine learning algorithms might be better. I have seen problems that neural networks (specifically recurrent neural networks) were better at solving. There is no right answer to this question since it is highly situationally dependent but I agree with dsimcha and Jay that SVM's are the right place to start.
I believe your problem is a regression problem, not a classification problem. The main difference: In classification we are trying to learn the value of a discrete variable, while in regression we are trying to learn the value of a continuous one. The techniques involved may be similar, but the details are different. Linear Regression is what most people try first. There are lots of other regression techniques, if linear regression doesn't do the trick.
You mentioned that you have 30-50 independent variables, and some are more important that the rest. So, assuming that you have historical data (or what we called a training set), you can use PCA (Principal Componenta Analysis) or other dimensionality reduction methods to reduce the number of independent variables. This step is of course optional. Depending on situations, you may get better results by keeping every variables, but add a weight to each one of them based on relevant they are. Here, PCA can help you to compute how "relevant" the variable is.
You also mentioned that events that are occured more recently should be more important. If that's the case, you can weight the recent event higher and the older event lower. Note that the importance of the event doesn't have to grow linearly accoding to time. It may makes more sense if it grow exponentially, so you can play with the numbers here. Or, if you are not lacking of training data, perhaps you can considered dropping off data that are too old.
Like Yuval F said, this does look more like a regression problem rather than a classification problem. Therefore, you can try SVR (Support Vector Regression), which is regression version of SVM (Support Vector Machine).
some other stuff you can try are:
Play around with how you scale the value range of your independent variables. Say, usually [-1...1] or [0...1]. But you can try other ranges to see if they help. Sometimes they do. Most of the time they don't.
If you suspect that there are "hidden" feature vector with a lower dimension, say N << 30 and it's non-linear in nature, you will need non-linear dimensionality reduction. You can read up on kernel PCA or more recently, manifold sculpting.
What you described is a classic classification problem. And in my opinion, why code fresh algorithms at all when you have a tool like Weka around. If I were you, I would run through a list of supervised learning algorithms (I don't completely understand whey people are suggesting unsupervised learning first when this is so clearly a classification problem) using 10-fold (or k-fold) cross validation, which is the default in Weka if I remember, and see what results you get! I would try:
-Neural Nets
-SVMs
-Decision Trees (this one worked really well for me when I was doing a similar problem)
-Boosting with Decision trees/stumps
-Anything else!
Weka makes things so easy and you really can get some useful information. I just took a machine learning class and I did exactly what you're trying to do with the algorithms above, so I know where you're at. For me the boosting with decision stumps worked amazingly well. (BTW, boosting is actually a meta-algorithm and can be applied to most supervised learning algs to usually enhance their results.)
A nice thing aobut using Decision Trees (if you use the ID3 or similar variety) is that it chooses the attributes to split on in order of how well they differientiate the data - in other words, which attributes determine the classification the quickest basically. So you can check out the tree after running the algorithm and see what attribute of a comic book most strongly determines the price - it should be the root of the tree.
Edit: I think Yuval is right, I wasn't paying attention to the problem of discretizing your price value for the classification. However, I don't know if regression is available in Weka, and you can still pretty easily apply classification techniques to this problem. You need to make classes of price values, as in, a number of ranges of prices for the comics, so that you can have a discrete number (like 1 through 10) that represents the price of the comic. Then you can easily run classification it.

Resources