formula for minimum colsample value in XGBoost - machine-learning

On the documentation for XGBoost parameters it says:
colsample_by* parameters work cumulatively. For instance, the combination {'colsample_bytree':0.5, 'colsample_bylevel':0.5, 'colsample_bynode':0.5} with 64 features will leave 8 features to choose from at each split.
With this in mind, does the following formula make sense to determine the minimum possible colsample* values when attempting hyperparameter optimization?
(features * (x^3)) = 1

Related

Setting correct input for RNN

In a database there are time-series data with records:
device - timestamp - temperature - min limit - max limit
device - timestamp - temperature - min limit - max limit
device - timestamp - temperature - min limit - max limit
...
For every device there are 4 hours of time series data (with an interval of 5 minutes) before an alarm was raised and 4 hours of time series data (again with an interval of 5 minutes) that didn't raise any alarm. This graph describes better the representation of the data, for every device:
I need to use RNN class in python for alarm prediction. We define alarm when the temperature goes below the min limit or above the max limit.
After reading the official documentation from tensorflow here, i'm having troubles understanding how to set the input to the model. Should i normalise the data beforehand or something and if yes how?
Also reading the answers here didn't help me as well to have a clear view on how to transform my data into an acceptable format for the RNN model.
Any help on how the X and Y in model.fit should look like for my case?
If you see any other issue regarding this problem feel free to comment it.
PS. I have already setup python in docker with tensorflow, keras etc. in case this information helps.
You can begin with a snippet that you mention in the question.
Any help on how the X and Y in model.fit should look like for my case?
X should be a numpy matrix of shape [num samples, sequence length, D], where D is a number of values per timestamp. I suppose D=1 in your case, because you only pass temperature value.
y should be a vector of target values (as in the snippet). Either binary (alarm/not_alarm), or continuous (e.g. max temperature deviation). In the latter case you'd need to change sigmoid activation for something else.
Should i normalise the data beforehand
Yes, it's essential to preprocess your raw data. I see 2 crucial things to do here:
Normalise temperature values with min-max or standardization (wiki, sklearn preprocessing). Plus, I'd add a bit of smoothing.
Drop some fraction of last timestamps from all of the time-series to avoid information leak.
Finally, I'd say that this task is more complex than it seems to be. You might want to either find a good starter tutorial on time-series classification, or a course on machine learning in general. I believe you can find a better method than RNN.
Yes you should normalize your data. I would look at differencing by every day. Aka difference interval is 24hours / 5 minutes. You can also try and yearly difference but that depends on your choice in window size(remember RNNs dont do well with large windows). You may possibly want to use a log-transformation like the above user said but also this seems to be somewhat stationary so I could also see that not being needed.
For your model.fit, you are technically training the equivelant of a language model, where you predict the next output. SO your inputs will be the preciding x values and preceding normalized y values of whatever window size you choose, and your target value will be the normalized output at a given time step t. Just so you know a 1-D Conv Net is good for classification but good call on the RNN because of the temporal aspect of temperature spikes.
Once you have trained a model on the x values and normalized y values and can tell that it is actually learning (converging) then you can actually use the model.predict with the preciding x values and preciding normalized y values. Take the output and un-normalize it to get an actual temperature value or just keep the normalized value and feed it back into the model to get the time+2 prediction

Parameter selection and k-fold cross-validation

I have one dataset, and need to do cross-validation, for example, a 10-fold cross-validation, on the entire dataset. I would like to use radial basis function (RBF) kernel with parameter selection (there are two parameters for an RBF kernel: C and gamma). Usually, people select the hyperparameters of SVM using a dev set, and then use the best hyperparameters based on the dev set and apply it to the test set for evaluations. However, in my case, the original dataset is partitioned into 10 subsets. Sequentially one subset is tested using the classifier trained on the remaining 9 subsets. It is obviously that we do not have fixed training and test data. How should I do hyper-parameter selection in this case?
Is your data partitioned into exactly those 10 partitions for a specific reason? If not you could concatenate/shuffle them together again, then do regular (repeated) cross validation to perform a parameter grid search. For example, with using 10 partitions and 10 repeats gives a total of 100 training and evaluation sets. Those are now used to train and evaluate all parameter sets, hence you will get 100 results per parameter set you tried. The average performance per parameter set can be computed from those 100 results per set then.
This process is built-in in most ML tools already, like with this short example in R, using the caret library:
library(caret)
library(lattice)
library(doMC)
registerDoMC(3)
model <- train(x = iris[,1:4],
y = iris[,5],
method = 'svmRadial',
preProcess = c('center', 'scale'),
tuneGrid = expand.grid(C=3**(-3:3), sigma=3**(-3:3)), # all permutations of these parameters get evaluated
trControl = trainControl(method = 'repeatedcv',
number = 10,
repeats = 10,
returnResamp = 'all', # store results of all parameter sets on all partitions and repeats
allowParallel = T))
# performance of different parameter set (e.g. average and standard deviation of performance)
print(model$results)
# visualization of the above
levelplot(x = Accuracy~C*sigma, data = model$results, col.regions=gray(100:0/100), scales=list(log=3))
# results of all parameter sets over all partitions and repeats. From this the metrics above get calculated
str(model$resample)
Once you have evaluated a grid of hyperparameters you can chose a reasonable parameter set ("model selection", e.g. by choosing a well performing while still reasonable incomplex model).
BTW: I would recommend repeated cross validation over cross validation if possible (eventually using more than 10 repeats, but details depend on your problem); and as #christian-cerri already recommended, having an additional, unseen test set that is used to estimate the performance of your final model on new data is a good idea.

How to decide numClasses parameter to be passed to Random Forest algorithm in SPark MLlib with pySpark

I am working on Classification using Random Forest algorithm in Spark have a sample dataset that looks like this:
Level1,Male,New York,New York,352.888890
Level1,Male,San Fransisco,California,495.8001345
Level2,Male,New York,New York,-495.8001345
Level1,Male,Columbus,Ohio,165.22352099
Level3,Male,New York,New York,495.8
Level4,Male,Columbus,Ohio,652.8
Level5,Female,Stamford,Connecticut,495.8
Level1,Female,San Fransisco,California,495.8001345
Level3,Male,Stamford,Connecticut,-552.8234
Level6,Female,Columbus,Ohio,7000
Here the last value in each row will serve as a label and rest serve as features. But I want to treat label as a category and not a number. So 165.22352099 will denote a category and so will -552.8234. For this I have encoded my features as well as label into categorical data. Now what I am having difficulty in is deciding what should I pass for numClasses parameter in Random Forest algorithm in Spark MlLib? I mean should it be equal to number of unique values in my label? My label has like 10000 unique values so if I put 10000 as value of numClasses then wouldn't it decrease the performance dramatically?
Here is the typical signature of building a model for Random Forest in MlLib:
model = RandomForest.trainClassifier(trainingData, numClasses=2, categoricalFeaturesInfo={},
numTrees=3, featureSubsetStrategy="auto",
impurity='gini', maxDepth=4, maxBins=32)
The confusion comes from the fact that you are doing something that you should not do. You problem is clearly a regression/ranking, not a classification. Why would you think about it as a classification? Try to answer these two questions:
Do you have at least 100 samples per each value (100,000 * 100 = 1,000,000)?
Is there completely no structure in the classes, so for example - are objects with value "200" not more similar to those with value "100" or "300" than to those with value "-1000" or "+2300"?
If at least one answer is no, then you should not treat this as a classification problem.
If for some weird reason you answered twice yes, then the answer is: "yes, you should encode each distinct value as a different class" thus leading to 10000 unique classes, which leads to:
extremely imbalanced classification (RF, without balancing meta-learner will nearly always fail in such scenario)
extreme number of classes (there are no models able to solve it, for sure RF will not solve it)
extremely small dimension of the problem- looking at as small is your number of features I would be surprised if you could predict from that binary classifiaction. As you can see how irregular are these values, you have 3 points which only diverge in first value and you get completely different results:
Level1,Male,New York,New York,352.888890
Level2,Male,New York,New York,-495.8001345
Level3,Male,New York,New York,495.8
So to sum up, with nearly 100% certainty this is not a classification problem, you should either:
regress on last value (keyword: reggresion)
build a ranking (keyword: learn to rank)
bucket your values to at most 10 different values and then - classify (keywords: imbalanced classification, sparse binary representation)

Recommended values for OpenCV RTrees parameters

Any idea on the recommended parameters for OpenCV RTrees? I have read the documentation and I'm trying to apply it to MNIST dataset, i.e. 60000 training images, with 10000 testing images. I'm trying to optimize MaxDepth, MinSampleCount, setMaxCategories, and setPriors? e.g.
Ptr<RTrees> model = RTrees::create();
/* Depth of the tree.
A low value will likely underfit and conversely
a high value will likely overfit.
The optimal value can be obtained using cross validation
or other suitable methods.
*/
model->setMaxDepth(?); // letter_recog.cpp uses 10
/* minimum samples required at a leaf node for it to be split.
A reasonable value is a small percentage of the total data e.g. 1%.
MNIST 70000 * 0.01 = 700
*/
model->setMinSampleCount(700?); letter_recog.cpp uses 10
/* regression_accuracy – Termination criteria for regression trees.
If all absolute differences between an estimated value in a node and
values of train samples in this node are less than this parameter
then the node will not be split. */
model->setRegressionAccuracy(0); // I think this is already correct
/*
use_surrogates – If true then surrogate splits will be built.
These splits allow to work with missing data and compute variable importance correctly.'
To compute variable importance correctly, the surrogate splits must be enabled in
the training parameters, even if there is no missing data.
*/
model->setUseSurrogates(true); // I think this is already correct
/*
Cluster possible values of a categorical variable into K \leq max_categories clusters
to find a suboptimal split. If a discrete variable, on which the training procedure
tries to make a split, takes more than max_categories values, the precise best subset
estimation may take a very long time because the algorithm is exponential.
Instead, many decision trees engines (including ML) try to find sub-optimal split
in this case by clustering all the samples into max_categories clusters that is
some categories are merged together. The clustering is applied only in n>2-class
classification problems for categorical variables with N > max_categories possible values.
In case of regression and 2-class classification the optimal split can be found
efficiently without employing clustering, thus the parameter is not used in these cases.
*/
model->setMaxCategories(?); letter_recog.cpp uses 15
/*
priors – The array of a priori class probabilities, sorted by the class label value.
The parameter can be used to tune the decision tree preferences toward a certain class.
For example, if you want to detect some rare anomaly occurrence, the training base will
likely contain much more normal cases than anomalies, so a very good classification
performance will be achieved just by considering every case as normal.
To avoid this, the priors can be specified, where the anomaly probability is
artificially increased (up to 0.5 or even greater), so the weight of the misclassified
anomalies becomes much bigger, and the tree is adjusted properly. You can also think about
this parameter as weights of prediction categories which determine relative weights that
you give to misclassification. That is, if the weight of the first category is 1 and
the weight of the second category is 10, then each mistake in predicting the
second category is equivalent to making 10 mistakes in predicting the first category.
*/
model->setPriors(Mat()); // ?
/* If true then variable importance will be calculated and
then it can be retrieved by CvRTrees::get_var_importance().
*/
model->setCalculateVarImportance(true); // I think this is already correct
/*
The size of the randomly selected subset of features at each tree node and
that are used to find the best split(s). If you set it to 0 then the size
will be set to the square root of the total number of features.
*/
model->setActiveVarCount(0); // I think this is already correct
/*
CV_TERMCRIT_ITER Terminate learning by the max_num_of_trees_in_the_forest;
CV_TERMCRIT_EPS Terminate learning by the forest_accuracy;
CV_TERMCRIT_ITER | CV_TERMCRIT_EPS Use both termination criteria.
*/
model->setTermCriteria(TC(100,0.01f)); // I think this is already correct

Normalizing feature values for SVM

I've been playing with some SVM implementations and I am wondering - what is the best way to normalize feature values to fit into one range? (from 0 to 1)
Let's suppose I have 3 features with values in ranges of:
3 - 5.
0.02 - 0.05
10-15.
How do I convert all of those values into range of [0,1]?
What If, during training, the highest value of feature number 1 that I will encounter is 5 and after I begin to use my model on much bigger datasets, I will stumble upon values as high as 7? Then in the converted range, it would exceed 1...
How do I normalize values during training to account for the possibility of "values in the wild" exceeding the highest(or lowest) values the model "seen" during training? How will the model react to that and how I make it work properly when that happens?
Besides scaling to unit length method provided by Tim, standardization is most often used in machine learning field. Please note that when your test data comes, it makes more sense to use the mean value and standard deviation from your training samples to do this scaling. If you have a very large amount of training data, it is safe to assume they obey the normal distribution, so the possibility that new test data is out-of-range won't be that high. Refer to this post for more details.
You normalise a vector by converting it to a unit vector. This trains the SVM on the relative values of the features, not the magnitudes. The normalisation algorithm will work on vectors with any values.
To convert to a unit vector, divide each value by the length of the vector. For example, a vector of [4 0.02 12] has a length of 12.6491. The normalised vector is then [4/12.6491 0.02/12.6491 12/12.6491] = [0.316 0.0016 0.949].
If "in the wild" we encounter a vector of [400 2 1200] it will normalise to the same unit vector as above. The magnitudes of the features is "cancelled out" by the normalisation and we are left with relative values between 0 and 1.

Resources