I used random search and got the best hyper parameters for my model, can I pass that model to the AutoML?
Does AutoML do the random search for the best hyper parameters by itself? or is there something I need to pass?
I presume you're referring to Google Cloud AutoML. It is a cloud-based Machine Learning (ML) platform that suggests a no-code approach to building data-driven solutions. AutoML was designed to build custom models for both newcomers and experienced machine learning engineers.
For newcomers, you could use Vertex AI (fully automated) to build a ML model:
For experienced ML engineers, you could also use AutoML Tabular to build a custom model, with the ability to select a model and input the selected hyperparameters:
You can read more details from here
Related
I would like to set up a prediction task, but the data preprocessing step requires using tools outside of Python's data science ecosystem, though Python has APIs to work with those tools (e.g. a compiled java NLP tool set). I first thought about creating a Docker container to have an environment with those tools available, but a commentator has said that that is not currently supported. Is there perhaps some other way to make such tools available to the Python prediction class needed for AI Platform? I don't really have a clear sense of what's happening on the backend with AI platform, and how much ability a user has to modify or set that up.
Not possible today. Is there any specific use case you are targeting not satisfied today?
Cloud AI platform offers multiple prediction frameworks (TensorFlow, scikit-learn, XGboost, Pytorch, Custom predictions) in multiple versions.
After looking into the requirements you can use the new AI Platform feature custom prediction, https://cloud.google.com/ml-engine/docs/tensorflow/custom-prediction-routine-keras
To deploy a custom prediction routine to serve predictions from your trained model, do the following:
Create a custom predictor to handle requests
Package your predictor and your preprocessing module. Here you can install your custom libraries.
Upload your model artifacts and your custom code to Cloud Storage
Deploy your custom prediction routine to AI Platform
I'm preparing for the Azure Machine Learning exam, and here is a question confuses me.
You are designing an Azure Machine Learning workflow. You have a
dataset that contains two million large digital photographs. You plan
to detect the presence of trees in the photographs. You need to ensure
that your model supports the following:
Solution: You create a Machine
Learning experiment that implements the Multiclass Decision Jungle
module. Does this meet the goal?
Solution: You create a Machine Learning experiment that implements the
Multiclass Neural Network module. Does this meet the goal?
The answer for the first question is No while for second is Yes, but I cannot understand why Multiclass Decision Jungle doesn't meet the goal since it is a classifier. Can someone explain to me the reason?
I suppose that this is part of a series of questions that present the same scenario. And there should be definitely some constraints in the scenario.
Moreover if you have a look on the Azure documentation:
However, recent research has shown that deep neural networks (DNN)
with many layers can be very effective in complex tasks such as image
or speech recognition. The successive layers are used to model
increasing levels of semantic depth.
Thus, Azure recommends using Neural Networks for image classification. Remember, that the goal of the exam is to test your capacity to design data science solution using Azure so better to use their official documentation as a reference.
And comparing to the other solutions:
You create an Azure notebook that supports the Microsoft Cognitive
Toolkit.
You create a Machine Learning experiment that implements
the Multiclass Decision Jungle module.
You create an endpoint to the
Computer vision API.
You create a Machine Learning experiment that
implements the Multiclass Neural Network module.
You create an Azure
notebook that supports the Microsoft Cognitive Toolkit.
There are only 2 Azure ML Studio modules, and as the question is about constructing a workflow I guess we can only choose between them. (CNTK is actually the best solution as it allows constructing a deep neural network with ReLU whereas AML Studio doesn't, and API call is not about data science at all).
Finally, I do agree with the other contributors that the question is absurd. Hope this helps.
This question is indeed part of a series of questions that present the same scenario with multiple options. Both of the solutions approach the problem as a multi-class classification problem, which is correct. However, the key element here is dimensionality.
Your inputs (images) are highly dimensional which requires a deep learning approach in order to be effective. A decision jungle won't be able to learn effectively in such a high dimensional feature space, where a NN has higher chances to do so.
I hope it helps.
Is there an option to request a faster node for online prediction in ML Engine?
For example, when training I can configure any of these machines for my job:
standard,
large_model,
complex_model_s,
complex_model_m,
complex_model_l,
standard_gpu,
complex_model_m_gpu,
complex_model_l_gpu,
standard_p100,
complex_model_m_p100
See description of available clusters and machines for training here and here
I am struggling to find if it is possible to control what kind of machine runs my online prediction.
We are currently adding that capability and will let you know when it's publicly available.
ML Engine offers 4-core instance type in addition to the default serving instance type for online prediction. However the feature is still at alpha stage and it will only be available to a selected list of accounts who opted in as "Trusted Testers". Please contact cloudml-feedback#google.com if you need help to setup prediction service with faster node.
I am developing a website, which will recommend recipes to the visitors based on their data. I am collecting data from their profile, website activity and facebook.
Currently I have data like [username/userId, rating of recipes, age, gender, type(veg/Non veg), cuisine(Italian/Chinese.. etc.)]. With respect to above features I want to recommend new recipes which they have not visited.
I have implemented ALS (alternating least squares) spark algorithm. In this we have to prepare csv which contains [userId,RecipesId,Rating] columns. Then we have to train this data and create the model by adjusting parameters like lamdas, Rank, iteration. This model generated recommendation, using pyspark
model.recommendProducts(userId, numberOfRecommendations)
The ALS algorithm accepts only three features userId, RecipesId, Rating. I am unable to include more features (like type, cuisine, gender etc.) apart from which I have mentioned above (userId, RecipesId, Rating). I want to include those features, then train the model and generate recommendations.
Is there any other algorithm in which I can include above parameters and generate recommendation.
Any help would be appreciated, Thanks.
Yes, there are couple of others algorithms. For your case, I would suggest that you Naive Bayes algorithm.
https://en.wikipedia.org/wiki/Naive_Bayes_classifier
Since you are working on a web application, a JS solution, I guess, would come handy to you.
(simple) https://www.npmjs.com/package/bayes
or for example:
(a bit more powerful) https://www.npmjs.com/package/naivebayesclassifier
There are algorithms called recommender systems in machine learning. In this we have content based recommender systems. They are mainly used to recommend products/movies based on customer reviews. You can apply the same algorithm using customer reviews to recommend recipes. For better understanding of this algorithm refer this links:
https://www.youtube.com/watch?v=Bv6VkpvEeRw&list=PL0Smm0jPm9WcCsYvbhPCdizqNKps69W4Z&index=97
https://www.youtube.com/watch?v=2uxXPzm-7FY
You can go with powerful classification algorithms like
->SVM: works very well if you have more number of attributes.
->Logistic Regression: if you have huge data of customers.
You are looking for recommender systems using algorithms like collaborative filtering. I would suggest you to go through Prof.Andrew Ng's short videos on collaborative filtering algorithm and low-rank matrix factorization and also building recommender systems. They are a part of Coursera's Machine learning course offered by Stanford University.
The course link:
https://www.coursera.org/learn/machine-learning#%20
You can check week 9 for the content related to recommender systems.
Can we customize the Named Entity Recognition (NER) model in Azure ML Studio with a separate training dataset? What I want to do is to find out non-English names from a text. (Training dataset includes the set of names that going to use for training)
Unfortunately, this module's ability to perform NER with a custom set of entities is planned for the future, but not currently available.
If you're familiar with Python and willing to put in the extra footwork, you might consider using the Natural Language Toolkit (NLTK). Sujit Pal has a nice blog post and sample code describing the creation of a custom NER with that package. You may be able to train an NLTK NER model and apply it to your data of interest from within an Execute Python Script module on Azure ML.