convert alphanumeric PIC X(02) to hex value 9(01) COMP-3 in cobol - cobol

I have Alphanumeric value = '86' and its length is defined as PIC x(02). I need to convert it into hex x'86' and its length is defined as PIC 9(01) comp-3.
example:
01 WS-ALPHANUMERIC PIC X(02) VALUE '86'.
01 WS-HEX PIC 9(01) COMP-3.
PROCEDURE DIVISION.
MOVE WS-ALPHANUMERIC TO WS-HEX.
DISPLAY WS-HEX.
STOP RUN
I am getting x'FF' in my spool. But I am expecting x'86'.

Why your code doesn't produce the output you're expecting
It is just guessing from my part for on my computer it doesn't work that way.
When you MOVE from WS-ALPHANUMERIC to WS-HEX, the string '86' in transformed in the decimal number 86.
However WS-HEX is only one byte long and in the COMP-3 format. This format can only store one decimal digit and the sign.
I'm guessing that on your environment when you move a bigger number than the capacity to a COMP-3 it take the biggest hexadecimal value it can hold : 0xF.
In my environment it would just take the digit 6 of the number 86.
So when you display, it is converted to a usage display so you have your firt 0xF for the usage formatting and then your 0xF for the "overflow" I guess.
On my computer you would just get a 0xF6.
A solution to produce the expected output
Disclaimer : I originally thought that your input would only be decimals, like '87596', '12' or '88'. This solution does not work for hexadecimals input like 'F1' ou '99F'. I built more complete solutions below in items 3 and 4 by improving this one
The solution I propose can take up to 16 digits in the input string if your system is 64bit because it takes 4 bits to store a hexadecimal digit.
Therefore if you want a larger input you'll have to use more than one result variable.
If you want to have it in only one byte, you just have to make Result a PIC 9(1) instead of PIC 9(18)
IDENTIFICATION DIVISION.
PROGRAM-ID. CNVRSN.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 RawInput PIC X(02) VALUE '86'.
01 FormattedInput PIC 9(16).
01 FractionedInput REDEFINES FormattedInput
05 Digit PIC 9 OCCURS 16.
01 Shifting PIC 9(18) COMP-5 VALUE 1.
01 I PIC 99 COMP-5.
01 Result PIC 9(18) COMP-5 VALUE 0.
01 DisplayResult REDEFINES Result PIC X(8).
PROCEDURE DIVISION.
MOVE RawInput TO FormattedInput.
PERFORM VARYING I FROM LENGTH OF FractionedInput
BY -1 UNTIL I < 1
COMPUTE Result = Result + Digit(I)*Shifting
MULTIPLY 16 BY Shifting
END-PERFORM
DISPLAY 'DisplayResult : ' DisplayResult
.
END PROGRAM CNVRSN.
The code works by transforming the string in a number of USAGE DISPLAY with the first move MOVE RawInput to FormattedInput.
We use the fact that each digit has the same format as a number of just one digit (PIC 9). This allows us to split the number in elements of an array with the REDEFINES of FomattedInput inFractionedInput
As you can see I traverse the array from the end to start because the least significant byte is at the end of the array (highest address in memory), not at the start (lowest address in memory).
Then we place each the hexadecimal digit in the correct place by shifting them to the left by 2^4 (a nibble, which is the size of a hexadecimal digit) as many times as required.
A solution that accepts the full hexadecimal input range (memory intensive)
Here is the code :
IDENTIFICATION DIVISION.
PROGRAM-ID. CNVRSN.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 RawInput PIC X(02) VALUE '86'.
01 FormattedInput PIC X(16).
01 FractionedInput REDEFINES FormattedInput
05 Digit PIC X OCCURS 16.
01 I PIC 99 COMP-5.
01 ConversionTableInitializer.
05 FILLER PIC X(192).
05 TenToFifteen PIC X(06) VALUE X'0A0B0C0D0E0F'.
05 FILLER PIC X(41).
05 ZeroToNine PIC X(10) VALUE X'00010203040506070809'.
01 ConversionTable Redefines ConversionTableInitializer.
05 DigitConverter PIC 99 COMP-5 OCCURS 249.
01 Result PIC 9(18) COMP-5 VALUE 0.
01 DisplayResult REDEFINES Result PIC X(8).
PROCEDURE DIVISION.
MOVE RawInput TO FormattedInput.
PERFORM VARYING I FROM 1 BY 1
UNTIL I > LENGTH OF FractionedInput
OR Digit(I) = SPACE
COMPUTE Result = Result*16 + DigitConverter(Digit(I))
END-PERFORM
DISPLAY 'DisplayResult : ' DisplayResult
.
END PROGRAM CNVRSN.
The idea in this solution is to convert each character (0,1...,E,F) to its value in hexadecimal. For this we use the value of their encoding as a string (0xC1 = 0d193 for A for instance) as the index of an array.
This is very wasteful of memory for we allocate 249 bytes to store only 16 nibbles of information. However to access the element of an array is a very fast operation: We are trading the memory usage for cpu efficiency.
The underlying idea in this solution is a hashtable. This solution is nothing but a very primitive hash table where the hash function is the identity function (A very, very bad hash function).
Another solution that accepts the full hexadecimal input range (CPU intensive)
Disclaimer : This solution was proposed by #Jim Castro in the comments.
IDENTIFICATION DIVISION.
PROGRAM-ID. CNVRSN.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 RawInput PIC X(02) VALUE '86'.
01 FormattedInput PIC X(16).
01 FractionedInput REDEFINES FormattedInput
05 Digit PIC 9 OCCURS 16.
01 ConversionString PIC X(16) VALUE '0123456789ABCDEF'.
01 ConversionTable REDEFINES ConversionString.
05 ConversionEntry OCCURS 16 INDEXED BY Idx.
10 HexDigit PIC X.
01 I PIC 99 COMP-5.
01 Result PIC 9(18) COMP-5 VALUE 0.
01 DisplayResult REDEFINES Result PIC X(8).
PROCEDURE DIVISION.
MOVE RawInput TO FormattedInput.
PERFORM VARYING I FROM 1 BY 1
UNTIL I > LENGTH OF FractionedInput
OR Digit(I) = SPACE
SET Idx To 1
SEARCH ConversionEntry
WHEN HexDigit(Idx) = Digit(I)
COMPUTE Result = Result*16 + Idx - 1
END-SEARCH
END-PERFORM
DISPLAY 'DisplayResult : ' DisplayResult
.
END PROGRAM CNVRSN.
Here the idea is still to convert the string digit to its value. However instead of trading off memory efficiency for cpu efficiency we are doing the converse.
We have a ConversionTable where each character string is located at the index that convey the value they are supposed to convey + 1 (because in COBOL arrays are 0 based). We juste have to find the matching character and then the index of the matching character is equal to the value in hexadecimal.
Conclusion
There are several ways to do what you want. The fundamental idea is to :
Implement a way to convert a character to its hexadecimal value
Traverse all the characters of the input string and use their position to give them the correct weight.
Your solution will always be a trade off between memory efficiency and time efficiency. Sometimes you want to preserve your memory, sometimes you want the execution to be real fast. Sometimes you wand to find a middle ground.
To go in this direction we could improve the solution of the item 3 in terms of memory at the expense of the cpu. This would be a compromise between item 3 and 4.
To do it we could use a modulo operation to restrict the number of possibilities to store. Going this way would mean implementing a real hashtable.

I don't have access to an IBM mainframe to test this code.
When I run the code on an online GnuCOBOL v2.2 compiler, I'm stuck with ASCII instead of EBCDIC.
I've posted the code. Here's what you have to do.
Make sure the top byte comes out to 8 and the bottom byte comes out to 6. You're converting the EBCDIC values to intager values. Values A - F hex will have different EBCDIC values than values 0 - 9.
Make sure the multiply and add are correct
Here's the code. You'll have to fix it to work with EBCDIC.
IDENTIFICATION DIVISION.
PROGRAM-ID. CONVERSION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 WS-ALPHANUMERIC PIC X(02) VALUE '86'.
01 WS-WORK-FIELDS.
05 WS-INPUT.
10 WS-ONE.
15 WS-TOP-BYTE PIC 99 COMP.
10 WS-TWO.
15 WS-BOTTOM-BYTE PIC 99 COMP.
05 WS-ACCUMULATOR PIC S9(4) COMP.
05 FILLER REDEFINES WS-ACCUMULATOR.
10 FILLER PIC X.
10 WS-HEX PIC X.
PROCEDURE DIVISION.
0000-BEGIN.
MOVE WS-ALPHANUMERIC TO WS-INPUT
DISPLAY WS-INPUT
COMPUTE WS-TOP-BYTE = WS-TOP-BYTE - 183
COMPUTE WS-BOTTOM-BYTE = WS-BOTTOM-BYTE - 183
IF WS-TOP-BYTE NOT LESS THAN 16
COMPUTE WS-TOP-BYTE = WS-TOP-BYTE - 57
END-IF
IF WS-BOTTOM-BYTE NOT LESS THAN 16
COMPUTE WS-BOTTOM-BYTE = WS-BOTTOM-BYTE - 57
END-IF
DISPLAY WS-TOP-BYTE
DISPLAY WS-BOTTOM-BYTE
MOVE WS-TOP-BYTE TO WS-ACCUMULATOR
MULTIPLY 16 BY WS-ACUMULATOR
ADD WS-BOTTOM-BYTE TO WS-ACCUMULATOR
DISPLAY WS-ACCUMULATOR
DISPLAY WS-HEX
GOBACK.

Related

COBOL supress last number while summing two decimal numbers

According to the COBOL code below when I try to sum WS-NUM1 with WS-NUM2, COBOL seems to supress the last number. For example: variable WS-NUM1 and WS-NUM2 are 10.15, I get 20.20 as result but expected 20.30. What's wrong?
WS-NUM1 PIC 9(2)V99.
WS-NUM2 PIC 9(2)V99.
WS-RESULTADO PIC 9(2)V99.
DISPLAY "Enter the first number:"
ACCEPT WS-NUM1.
DISPLAY "Enter the second number:"
ACCEPT WS-NUM2.
COMPUTE WS-RESULTADO = WS-NUM1 + WS-NUM2.
Thanks in advance.
PIC 9(2)v99 defines a variable with an implied decimal place not a real one. You're trying to enter data containing a decimal point and it's not working because you have to strip out the '.' to get the numeric part of your data to properly fit in the 4 bytes that your working storage area occupies.
PROGRAM-ID. ADD2.
data division.
working-storage section.
01 ws-num-input pic x(5).
01 WS-NUM1 PIC 9(2)V99 value 0.
01 redefines ws-num1.
05 ws-high-num pic 99.
05 ws-low-num pic 99.
01 WS-NUM2 PIC 9(2)V99 value 0.
01 redefines ws-num2.
05 ws-high-num2 pic 99.
05 ws-low-num2 pic 99.
01 WS-RESULTADO PIC 9(2)V99.
PROCEDURE DIVISION.
DISPLAY "Enter the first number:"
*
accept ws-num-input
unstring ws-num-input delimited by '.'
into ws-high-num, ws-low-num
DISPLAY "Enter the second number:"
accept ws-num-input
unstring ws-num-input delimited by '.'
into ws-high-num2, ws-low-num2
*
COMPUTE WS-RESULTADO = WS-NUM1 + WS-NUM2.
DISPLAY WS-RESULTADO
STOP RUN
.
This is just a simple demonstration. In a real world application you would have to insure much more robust edits to ensure that valid numeric data was entered.
If I declare it like this
01 WS-NUM1 PIC 9(2)V99.
01 WS-NUM2 PIC 9(2)V99.
01 WS-RESULTADO PIC 9(2)V99.
and define and sum them up like this
SET WS-NUM1 TO 10.15.
SET WS-NUM2 TO 10.15.
COMPUTE WS-RESULTADO = WS-NUM1 + WS-NUM2.
DISPLAY WS-RESULTADO.
I get the expected result of 20.30.
This looks like a job for a special type of PICture : Edited picture
Indeed you seem to know about the vanilla PICture clause (I'm writing PICture because as you may know it you can either write PIC or PICTURE).
A vanilla number PIC contains only 4 different symbols (and the parentheses and numbers in order to repeat some of the symbols)
9 : Represents a digit. You can repeat by using a number between parentheses like said before.
S : Means that the number is signed
V : Show the position of the implicit decimal point
P : I've been told that it exists but I honestly never found it in the codebase of my workplace. Its another kind of decimal point used for scaling factors but I don't know much about it.
But there are other symbols.
If you use theses other mysterious symbols the numeric PIC becomes an edited numeric PIC. As its name says, an edited PICture is made to be shown. It will allow you to format your numbers for better presentation or to receive number formatted for human reading.
Once edited, you cannot use it to make computations so you will have to transfer from edited to vanilla to perform computations on the latter. And you move from vanilla to edited in order to display your results.
So now I shall reveal some of these mysterious symbols :
B : Insert a blank at the place it is put
0 : Insert a zero at the place it is put
. : Insert the decimal point at the place it is put
: Insert a + if the number is positive and a - if the number is negative
Z : Acts like a 9 if the digits it represents has a value different than 0. Acts like a blank if the digits has the value of 0.
To my knowledge there are also : / , CR DB * $ -
You can look up for it on the internet. They really show the accountant essence of cobol.
For your problems we are really interested by the "." which will allow us to take into account the decimal point you have the write when you type down your input.
For a bonus I will also use Z which will make your result looks like 2.37 instead of 02.37 if the number is less than ten.
Note that you cannot use the repeating pattern with parenthesis ( 9(03) for instance) when describing an edited picture ! Each digits has to represented explicitly
IDENTIFICATION DIVISION.
PROGRAM-ID. EDITCOMP.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 WS-NUM1-EDITED PIC 99.99.
01 WS-NUM2-EDITED PIC 99.99.
01 WS-NUM1-CALC PIC 9(2)V99.
01 WS-NUM2-CALC PIC 9(2)V99.
01 WS-RESULTADO-EDITED PIC Z9.99.
PROCEDURE DIVISION.
ACCEPT WS-NUM1-EDITED.
ACCEPT WS-NUM2-EDITED.
MOVE WS-NUM1-EDITED TO WS-NUM1-CALC.
MOVE WS-NUM2-EDITED TO WS-NUM2-CALC.
COMPUTE WS-RESULTADO-EDITED = WS-NUM1-CALC + WS-NUM2-CALC.
DISPLAY WS-RESULTADO-EDITED.
STOP RUN.
You should note that there also exist edited alphanumeric picture. You can insert Blank (B), zeroes (0) or / (/) in it.

What is an easy way to get the ASCII value of a character in Cobol

We have to find more than one way to get the ascii value of a character.
On top of that we also need to get the sum of all the characters's ascii values.
I currently have the below and works alright for the first section where you need individual values
.
I just need to know if there is an easier way or a function to do this in Cobol?
DATA DIVISION.
FILE SECTION.
WORKING-STORAGE SECTION.
01 WS-COUNTERS.
03 WS-COUNTER PIC 9(05).
03 WS-INPUT PIC X(01).
03 WS-DISPLAY PIC 9(03).
01 W1-ARRAY.
03 ALPHABETIC-CHARS OCCURS 26 TIMES PIC X.
01 W3-ARRAY.
03 NUMERIC-CHARS OCCURS 26 TIMES PIC X.
PROCEDURE DIVISION.
A000-MAIN SECTION.
BEGIN.
PERFORM B000-INITIALIZE.
PERFORM C000-PROCESS UNTIL WS-COUNTER > 26.
PERFORM D000-END.
A099-EXIT.
STOP RUN.
B000-INITIALIZE SECTION.
ACCEPT WS-INPUT.
MOVE "ABCDEFGHIJKLMNOPQRSTUVWXYZ" TO W1-ARRAY.
MOVE "01234567890000000000000000" TO W3-ARRAY.
MOVE 1 TO WS-COUNTER.
MOVE 0 TO WS-DISPLAY.
B099-EXIT.
EXIT.
C000-PROCESS SECTION.
C001-BEGIN.
IF WS-INPUT IS NUMERIC
IF NUMERIC-CHARS(WS-COUNTER) = WS-INPUT
COMPUTE WS-DISPLAY = WS-COUNTER + 48 - 1
END-IF
ELSE
IF ALPHABETIC-CHARS(WS-COUNTER) = WS-INPUT
COMPUTE WS-DISPLAY = WS-COUNTER + 65 - 1
END-IF
END-IF.
ADD 1 TO WS-COUNTER.
C099-EXIT.
EXIT.
Have a look at FUNCTION ORD and keep in mind that you will get the ordinal number in the program's collating sequence (which may be EBCDIC or not the full ASCII).
As this function was introduced in the COBOL85 standard it should be available in most compilers (your question misses the compiler/machine you use).

COBOL Error Code 18

I have an error code 18 in COBOL when I'm trying to write the output to a file. I'm using Micro Focus VS 2012. I have tried everything but it seem doesn't print the output correctly at this time.
...
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT GRADE-FILE ASSIGN TO 'Grades.txt'.
SELECT PRINT-FILE ASSIGN TO 'Output.txt'
ORGANIZATION IS LINE SEQUENTIAL.
DATA DIVISION.
FILE SECTION.
FD GRADE-FILE
LABEL RECORDS ARE STANDARD.
01 GRADE-RECORD.
05 I-STUDENT PIC X(14).
05 I-GRADE1 PIC 999.
05 I-GRADE2 PIC 999.
05 I-GRADE3 PIC 999.
05 I-GRADE4 PIC 999.
05 I-GRADE5 PIC 999.
05 I-GRADE6 PIC 999.
FD PRINT-FILE
LABEL RECORDS ARE STANDARD.
01 PRINT-RECORD PIC X(80).
WORKING-STORAGE SECTION.
01 PROGRAM-VARIABLES.
05 W-AVERAGE PIC 999V99.
05 W-EOF-FLAG PIC X VALUE 'N'.
01 PAGE-TITLE.
05 PIC X(46) VALUE
' S I X W E E K G R A D E R E P O R T'.
01 HEADING-LINE1.
05 PIC X(51) VALUE
' Student T e s t S c o r e s Average'.
01 HEADING-LINE2.
05 PIC X(51) VALUE
'--------------------------------------------------'.
01 DETAIL-LINE.
05 PIC X VALUE SPACE.
05 O-STUDENT PIC X(14).
05 PIC X VALUE SPACE.
05 O-GRADE1 PIC ZZ9.
05 PIC X VALUE SPACE.
05 O-GRADE2 PIC ZZ9.
05 PIC X VALUE SPACE.
05 O-GRADE3 PIC ZZ9.
05 PIC X VALUE SPACE.
05 O-GRADE4 PIC ZZ9.
05 PIC X VALUE SPACE.
05 O-GRADE5 PIC ZZ9.
05 PIC X VALUE SPACE.
05 O-GRADE6 PIC ZZ9.
05 PIC X(4) VALUE SPACE.
05 O-AVERAGE PIC ZZ9.99.
PROCEDURE DIVISION.
10-MAINLINE.
OPEN INPUT GRADE-FILE
OUTPUT PRINT-FILE
PERFORM 20-PRINT-HEADINGS
PERFORM 30-PROCESS-LOOP
CLOSE GRADE-FILE
PRINT-FILE
STOP RUN.
20-PRINT-HEADINGS.
MOVE PAGE-TITLE TO PRINT-RECORD
WRITE PRINT-RECORD AFTER ADVANCING 1 LINE
MOVE HEADING-LINE1 TO PRINT-RECORD
WRITE PRINT-RECORD AFTER ADVANCING 3 LINES
MOVE HEADING-LINE2 TO PRINT-RECORD
WRITE PRINT-RECORD AFTER ADVANCING 1 LINE.
30-PROCESS-LOOP.
* PERFORM 40-READ-RECORD
READ GRADE-FILE
PERFORM UNTIL W-EOF-FLAG = 'Y'
PERFORM 50-COMPUTE-GRADE-AVERAGE
PERFORM 60-PRINT-DETAIL-LINE
READ GRADE-FILE
* PERFORM 40-READ-RECORD
END-PERFORM.
*40-READ-RECORD.
* READ GRADE-FILE
* AT END MOVE 'Y' TO W-EOF-FLAG.
50-COMPUTE-GRADE-AVERAGE.
COMPUTE W-AVERAGE ROUNDED = (I-GRADE1 + I-GRADE2 + I-GRADE3 + I-GRADE4 + I-GRADE5 + I-GRADE6 ) / 6.
60-PRINT-DETAIL-LINE.
MOVE SPACES TO DETAIL-LINE
MOVE I-STUDENT TO O-STUDENT
MOVE I-GRADE1 TO O-GRADE1
MOVE I-GRADE2 TO O-GRADE2
MOVE I-GRADE3 TO O-GRADE3
MOVE I-GRADE4 TO O-GRADE4
MOVE I-GRADE5 TO O-GRADE5
MOVE I-GRADE6 TO O-GRADE6
MOVE W-AVERAGE TO O-AVERAGE
WRITE PRINT-RECORD FROM DETAIL-LINE AFTER ADVANCING 1 LINE.
end program "GradeReport.Program1"
S I X W E E K G R A D E R E P O R T
Student T e s t S c o r e s Average
--------------------------------------------------
KellyAntonetz0 700 500 980 800 650 852 747.00
obertCain09708 207 907 309 406 2;1 25> 400.67
Dehaven0810870 940 850 930 892 122 981 785.83
rmon0760770800 810 750 92; 142 9>1 <1> 816.33
g0990930890830 940 901 =1> 41= ?82 65 872.50
06707108408809 6=9 ;52 565 <<0 900 870 924.33
78052076089Woo 493 9>4 520 760 760 830 734.50
Something prior to your COBOL program has pickled your file by removing all the spaces and shuffling the data to the left.
Your first student shows as KellyAntonetz but likely should be Kelly Antonetz. Since only one space was removed, the grade data has moved only one place to the left, so the numbers are still recognizable and although the average is a factor of 10 out, it is approximately correct.
It is not actually correct (except for the power of 10) because of that 2 following the 85. Where did that 2 come from?
It came from the next record, where the first-name should be Robert but you show as obertCain09708. The ASCII code for the letter R is X'82'. When treated as a number by COBOL the 8 will be ignored (or will cause a crash when in the trailing byte of a number). Your compiler doesn't cause the code to crash, but does treat the R as the number 2.
obertCain is only 9 bytes out of the 14 you have for the name. The five spaces/blanks which have been "lost" this time cause the numerics to be pulled-left by five bytes. From that point onward, explaining how the output you show fits the presumed input becomes an academic exercise only.
Further support is a reference for what would be a FILE STATUS code of 18 from a Micro Focus compiler, here: http://www.simotime.com/vsmfsk01.htm
Which says, for 18:
Read part record error: EOF before EOR or file open in wrong mode
(Micro Focus).
Your final record would "finish" before expected, with end-of-file being detected before 32 bytes have been read.
Note that the error is on your input file, not your output file.
Losing the spaces in that way can be done in many ways, so I can't guess what you are doing to the file before it gets to the COBOL program, but neither COBOL itself nor your code is doing that.
Take note of Emmad Kareem's comments. Use the FILE STATUS. Check the file-status field (define one per file) after each IO, so that you know when a problem occurs, and what the problem is.
Testing the file-status field for 10 on a file you are reading sequentially gives cleaner code than the AT END on the READ.
Note also that if your program had not crashed there, it would either loop infinitely or crash shortly afterwards. Probably in trying to fix your problem, you have commented-out your use of the "read paragraph" and in that paragraph is the only place you are setting end-of-file.
If you use the file-status instead of AT END, you don't need to define a flag/switch you can use an 88 on the file-status field and have the COBOL run-time set it for you directly, without you having to code it.
Just a couple of points about your DETAIL-LINE.
There is no need to MOVE SPACE to it, as you MOVE to each named field, and the (un-named) FILLERs have VALUE SPACE.
You don't necessarily need the (un-named) FILLERS. Try this:
01 DETAIL-LINE.
05 O-STUDENT PIC BX(14).
05 O-GRADE1 PIC ZZZ9.
05 O-GRADE2 PIC ZZZ9.
05 O-GRADE3 PIC ZZZ9.
05 O-GRADE4 PIC ZZZ9.
05 O-GRADE5 PIC ZZZ9.
05 O-GRADE6 PIC ZZZ9.
05 O-AVERAGE PIC Z(6)9.99.
If you work with COBOL, you may see this type of thing, so it is good to know. With massive amounts of output there is probably a small performance penalty. You may find it more convenient for "lining-up" output to headings.
Ah. Putting together you non-use of LINE SEQUENTIAL for your input file, I predict you have a "script" running some time before the COBOL program which is supposed to remove the record-terminators (whatever those are on your OS) at the end of each logical record, but that you have accidentally removed all whitespace from all positions of your record instead.
With LINE SEQUENTIAL you can have records of fixed-length which also happen to be "terminated". Unless the exercise specifically includes the removal of the record terminators, just use LINE SEQUENTIAL.
If you are supposed to remove the terminators, don't do so for whitespace which covers too much (be specific) and also "anchor" the change to the end of the record.

COBOL issue - issue from a beginner , please guide

I want to acheive the below
a string of pic X(5) contains A1992 and is incremented to A9999 , after it reaches A9999 , the A should be replaced by B and the other characters should be reinitialized to 0000 ie B0000 , this should happen until Z9999 , is it possible somehow ?
or if you could show me how to increment A till Z that would be suffice
You will need to do some manual character manipulation on this one. There are several parts, first, you need to handle the simple addition of the numeric portion, then you need to handle the rollover of that to increment the alpha portion.
Data structures similar to this might be helpful:
01 Some-Work-Area.
02 Odometer-Char-Vals pic x(27) value 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'.
02 Odometer-Char occurs 27 pic x.
02 Odo-Char-Ndx pic s9(8) binary.
01 My-Odometer.
88 End-Odometer-Value value 'Z9999'.
02 My-Odometer-X pic X.
02 My-Odometer-9 pic 9999.
88 Carry-Is-True value 9999.
This would be used with a simple perform loop like so:
Move 0 to My-Odometer-9
Move 1 to Odo-Char-Ndx
Move Odometer-Char-Vals (Odo-Char-Ndx) to My-Odometer-X
Perform until End-Odometer-Value
Add 1 to My-Odometer-9
Display My-Odometer
If Carry-Is-True
Move 0 to My-Odometer-9
Add 1 to Odo-Char-Ndx
Move Odometer-Char-Vals (Odo-Char-Ndx) to My-Odometer-X
End-If
End-Perform
That is one way you could do it.
Please note, the code above took some shortcuts (aka skanky hacks) -- like putting a pad cell in the Odometer-Char array so I don't have to range check it. You wouldn't want to use this for anything but examples and ideas.
I'd probably do this with a nested perform loop.
Storage:
01 ws-counter-def
03 ws-counter-def-alpha-list pic x(27) value 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'.
03 ws-counter-def-num pic 9(4) comp-3.
01 ws-counter redefines ws-counter-def
03 ws-counter-alpha occurs 27 times indexed by counter-idx pic x.
03 ws-counter-num pic 9(4) comp-3.
01 ws-variable
03 ws-variable-alpha pic X
03 ws-variable-num pic X(4).
Procedure:
Initialize counter-idx.
Move 1992 to ws-counter-num.
Perform varying counter-idx from 1 by 1 until counter-idx > 26
move ws-counter-alpha(counter-idx) to ws-variable-alpha
perform until ws-counter-num = 9999
add 1 to ws-counter-
move ws-counter-num to ws-variable-num.
*do whatever it is you need to do to the pic X(5) value in ws-variable*
end-perform
move zeros to ws-counter-num
end-perform.
Just can't help myself... How about this...
IDENTIFICATION DIVISION.
PROGRAM-ID. EXAMPLE.
DATA DIVISION.
WORKING-STORAGE SECTION.
01.
02 ALL-LETTERS PIC X(26) VALUE 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'.
02 LETTERS REDEFINES ALL-LETTERS.
03 LETTER PIC X OCCURS 26 INDEXED BY I.
01 START-NUMBER PIC 9(4).
01 COUNTER.
02 COUNTER-LETTER PIC X.
02 COUNTER-NUMBER PIC 9(4).
PROCEDURE DIVISION.
MOVE 1992 TO START-NUMBER
PERFORM VARYING I FROM 1 BY 1 UNTIL I > LENGTH OF ALL-LETTERS
MOVE LETTER (I) TO COUNTER-LETTER
PERFORM TEST AFTER VARYING COUNTER-NUMBER FROM START-NUMBER BY 1
UNTIL COUNTER-NUMBER = 9999
DISPLAY COUNTER - or whatever else you need to do with the counter...
END-PERFORM
MOVE ZERO TO START-NUMBER
END-PERFORM
GOBACK
.
This will print all the "numbers" beginning with A1992 through to Z9999.
Basically stole Marcus_33's code and twiked it a tiny bit more. If you feel so inclined please upvote his answer, not mine
For lovers of obfuscated COBOL, here's the shortest (portable) version I can think of (assuming a compiler with Intrinsic Functions):
IDENTIFICATION DIVISION.
PROGRAM-ID. so.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 ws-counter value "A00".
03 ws-alpha pic x.
03 ws-number pic 99.
PROCEDURE DIVISION.
1.
Perform with test after until ws-counter > "Z99"
Display ws-counter, " " with no advancing
Add 1 To ws-number
On size error
Move zero to ws-number
perform with test after until ws-alpha is alphabetic-upper or > "Z"
Move Function Char (Function Ord( ws-alpha ) + 1) to ws-alpha
end-perform
End-add
End-perform.
END PROGRAM so.
Tested on OpenVMS/COBOL. I shorten the value to X(3) since it's boring to watch run. A non-portable version (if you are aware of the Endianness of your platform) is to redefined the prefix as a S9(4) COMP and increment the low-order bits directly. But that solution wouldn't be any shorter...

How can I convert an alphanumeric and use it for calculation?

I will read a sequential file which include some string such as "79.85", "1000", "212.34".
I want to convert the alphanumeric into number in this format 00000.00 ?
I will need to add up these numbers and move it to a field in the format 0000000.00 .
I tried:
01 WS_AMOUNT_TXT PIC X(8).
01 WS_AMOUNT PIC 9(5).9(2).
MOVE WS_AMOUNT_TXT(1:8) TO WS_AMOUNT(1:8).
What I got is unexpected, the string is just as same. It is left align and no leading zero display.
How can I made it right align and have leading zero?
EDIT: I tried the suggestion by NealB, and it sadly failed:
01 WS_AMOUNT_NUM PIC 9(5)V9(2).
01 WS_AMOUNT_DISPLAY PIC 9(5).9(2).
01 WS_AMOUNT_TXT PIC X(8).
DISPLAY WS_AMOUNT_TXT
COMPUTE WS_AMOUNT_NUM = FUNCTION NUMVAL (WS_AMOUNT_TXT)
MOVE WS_AMOUNT_NUM TO WS_AMOUNT_DISPLAY
79.85 << this is what was displayed when I called DISPLAY WS_AMOUNT_TXT
AND THEN IT CRASHED.
%COB-F-NUMVALARGINV, NUMVAL or NUMVAL-C argument invalid
%TRACE-F-TRACEBACK, symbolic stack dump follows
image module routine line rel PC abs PC
DEC$COBRTL 0 000000000001F2B8 000000007C2F72B8
DEC$COBRTL 0 0000000000014764 000000007C2EC764
DEC$COBRTL 0 0000000000014C44 000000007C2ECC44
DAILY_SPLIT_REFUND_ADJ DAILY_SPLIT_REFUND_ADJ DAILY_SPLIT_REFUND_ADJ
121 00000000000003C4 00000000000303C4
DAILY_SPLIT_REFUND_ADJ 0 00000000000313A0 00000000000313A0
0 FFFFFFFF80271EF4 FFFFFFFF80271EF4
Try using the intrinsic function NUMVAL
to do the conversion. Something like...
01 WS-AMOUNT-TEXT PIC X(8).
01 WS-AMOUNT-NUM PIC 9(5)V9(2).
01 WS-AMOUNT-DISPLAY PIC 9(5).9(2).
COMPUTE WS-AMOUNT-NUM = FUNCTION NUMVAL (WS-AMOUNT-TEXT)
MOVE WS-AMOUNT-NUM TO WS-AMOUNT-DISPLAY
NUMVAL converts the text representation of a number into a numeric type. Use the numeric data type: PIC 9(5)V9(2) in your calculations. Then use MOVE
to convert the numeric result into a displayable amount with explicit decimal point.
Note: If you have a lot of calculations to perform, it might be best to use a PACKED-DECIMAL data type to improve efficiency.
Use redefine.
01 WS-AMOUNT-TXT-GRP.
03 WS-AMOUNT PIC X(4).
01 WS-AMOUNT-NUM REDEFINES WS-AMOUNT-TXT-GRP PIC 9(4).
After re=licating value in WS-AMOUNT-TXT-GRP or in WS-AMOUNT, automatically value will replicate in WS-AMOUNT-NUM

Resources