I want to determine if an image has been overly compressed and thus if it contains those pixelated artifacts you can see clearly, for example, in the upper right portion of the image below. In the following comparison there are two JPEG images, the left one is the original, the right one has been saved at 30% quality and then saved again with 80% quality.
The loss of details in the right one is easily detactable at naked eye. I'm looking for an algorithm which, given the final image only and not the original one, detects if it's been overly compressed or if it has this kind of "disturb" which implies those clusters of similar/identical pixels and therefore determines an average poor quality of detail.
I analyzed them through ImageMagick and they have very similar values and histograms, and pretty the same min/max values on the RGB channels. The original image quality is 71% and the compressed one is 80% just because, as I already said before, I saved it back to 80% after saving it at 30% quality in first place, which makes the "quality" factor unreliable.
Before anyone asks, I wrote no code yet. I'm doing some research just looking for some tips to eventually find a solution but I don't really know how this phenomenon is called nor the algorithm(s) to serve the purpose. The matter of image and signal analysis is huge, so I'd really appreciate if you could help me to narrow it down.
Related
I'm trying to create a model that segment various part of an aerial image.
I'm using a dataset found in kaggle: https://www.kaggle.com/datasets/bulentsiyah/semantic-drone-dataset
My question regards about the right way of treat images for semantic segmentation.
In this case is it better to simply resize the images (e.g. 6000x4000 to 256x256 pixel) or is it better to resize them less but then create patches from it (e.g. 6000x4000 to 1024x1024 pixel and then patches in 256x256 pixel).
I think that resizing too much an image may cause the loss of information but at the same time patching could not guarantee a full view of the image.
I also found a notebook that got 96% accuracy just by resizing so i'm not sure how to proceed:
https://www.kaggle.com/code/yesa911/aerial-semantic-segmentation-96-acc/notebook
I think there is not one correct answer to this. Dependant on the amount and size of the areas you want to segmentate, it seems unlikely to get a proper/accurate segemantion with images of your size. However, if there are only easy detectable and big areas in the image I would definetly go for the approach without patches, since the patch-approach is way more complex as it has more variables to consider (size of patches, overlapping patches, edge treatment). It would save you a lot of implementation time for preprocessing and stichting afterwards.
TLDR: I would start without patching and - if the result is sufficient - stop there. Else, try the patching approach afterwards.
I'm looking for an image analyzing algorithm that estimates the "original" resolution of a picture after is has been scaled up.
I understand the result would depend a lot on image motive, focus, noise and post effects, but getting a rough estimate of a minimum size image that has the same information content would be quite interesting.
Is there something like this out there already, maybe even an existing tool/plugin?
(assuming this is a practical problem, as opposed to a theoretical question).
Have you looked at metadata? A lot of image processing software leaves the EXIF headers untouched, or appends helpful information to them...
I would like to know if it is possible to take low resolution image from street camera, increase it
and see image details (for example a face, or car plate number). Is there any software that is able to do it?
Thank you.
example of image: http://imgur.com/9Jv7Wid
Possible? Yes. In existence? not to my knowledge.
What you are referring to is called super-resolution. The way it works, in theory, is that you combine multiple low resolution images, and then combine them to create a high-resolution image.
The way this works is that you essentially map each image onto all the others to form a stack, where the target portion of the image is all the same. This gets extremely complicated extremely fast as any distortion (e.g. movement of the target) will cause the images to differ dramatically, on the pixel level.
But, let's you have the images stacked and have removed the non-relevant pixels from the stack of images. You are left hopefully with a movie/stack of images that all show the exact same image, but with sub-pixel distortions. A sub-pixel distortion simply means that the target has moved somewhere inside the pixel, or has moved partially into the neighboring pixel.
You can't measure if the target has moved within the pixel, but you can detect if the target has moved partially into a neighboring pixel. You can do this by knowing that the target is going to give off X amount of photons, so if you see 1/4 of the photons in one pixel and 3/4 of the photons in the neighboring pixel you know it's approximate location, which is 3/4 in one pixel and 1/4 in the other. You then construct an image that has a resolution of these sub-pixels and place these sub-pixels in their proper place.
All of this gets very computationally intensive, and sometimes the images are just too low-resolution and have too much distortion from image to image to even create a meaningful stack of images. I did read a paper about a lab in a university being able to create high-resolution images form low-resolution images, but it was a very very tightly controlled experiment, where they moved the target precisely X amount from image to image and had a very precise camera (probably scientific grade, which is far more sensitive than any commercial grade security camera).
In essence to do this in the real world reliably you need to set up cameras in a very precise way and they need to be very accurate in a particular way, which is going to be expensive, so you are better off just putting in a better camera than relying on this very imprecise technique.
Actually it is possible to do super-resolution (SR) out of even a single low-resolution (LR) image! So you don't have to hassle taking many LR images with sub-pixel shifts to achieve that. The intuition behind such techniques is that natural scenes are full of many repettitive patterns that can be use to enahance the frequency content of similar patches (e.g. you can implement dictionary learning in your SR reconstruction technique to generate the high-resolution version). Sure the enhancment may not be as good as using many LR images but such technique is simpler and more practicle.
Photoshop would be your best bet. But know that you cannot reliably inclrease the size of an image without making the quality even worse.
I'm using the EMGU OpenCV wrapper for c#. I've got a disparity map being created nicely. However for my specific application I only need the disparity values of very few pixels, and I need them in real time. The calculation is taking about 100 ms now, I imagine that by getting disparity for hundreds of pixel values rather than thousands things would speed up considerably. I don't know much about what's going on "under the hood" of the stereo solver code, is there a way to speed things up by only calculating the disparity for the pixels that I need?
First of all, you fail to mention what you are really trying to accomplish, and moreover, what algorithm you are using. E.g. StereoGC is a really slow (i.e. not real-time), but usually far more accurate) compared to both StereoSGBM and StereoBM. Those last two can be used real-time, providing a few conditions are met:
The size of the input images is reasonably small;
You are not using an extravagant set of parameters (for instance, a larger value for numberOfDisparities will increase computation time).
Don't expect miracles when it comes to accuracy though.
Apart from that, there is the issue of "just a few pixels". As far as I understand, the algorithms implemented in OpenCV usually rely on information from more than 1 pixel to determine the disparity value. E.g. it needs a neighborhood to detect which pixel from image A map to which pixel in image B. As a result, in general it is not possible to just discard every other pixel of the image (by the way, if you already know the locations in both images, you would not need the stereo methods at all). So unless you can discard a large border of your input images for which you know that you'll never find your pixels of interest there, I'd say the answer to this part of your question would be "no".
If you happen to know that your pixels of interest will always be within a certain rectangle of the input images, you can specify the input image ROIs (regions of interest) to this rectangle. Assuming OpenCV does not contain a bug here this should speedup the computation a little.
With a bit of googling you can to find real-time examples of finding stereo correspondences using EmguCV (or plain OpenCV) using the GPU on Youtube. Maybe this could help you.
Disclaimer: this may have been a more complete answer if your question contained more detail.
I have some (millions) of 16-bit losslessly compressed TIFFs (about 2MB each) and after exhausting TB of disk space I think it's time I archive the older TIFFs as 8-bit JPEGs. Each individual image is a grayscale image, though there may be as many as 5 such images representing the same imaging area at different wavelengths. Now I want to preserve as much information as possible in this process, including the ability to restore the images to their approximate original values. I know there are ways to get further savings through spatial correlations across multiple channels, but the number of channels can vary, and it would be nice to be able to load channels independently.
The images themselves suggest some possible strategies to use since close to ~60% of the area in each image is dark 'background'. So one way to preserve more of the useful image range is just to threshold away anything below this 'background' before scaling and reducing the bit depth. This strategy is, of course, pretty subjective, and I'm looking for any other suggestions for strategies that are demonstrably superior and/or more general. Maybe something like trying to preserve the most image entropy?
Thanks.
Your 2MB TIFFs are already losslessly compressed, so you would be hard-pressed to find a method that allows you to "restore the images" to their original value ranges without some loss of intensity detail.
So here are some questions to narrow down your problem a bit:
What are the image dimensions and number of channels? It's a bit difficult to guess from the filesize and bit depth alone, because as you've mentioned you're using lossless compression. A sample image would be good.
What sort of images are they? E.g. are they B/W blueprints, X-ray/MRI images, color photographs. You mention that around 60% of the images is "background" -- could you tell us more about the image content?
What are they used for? Is it just for a human viewer, or are they training images for some computer algorithm?
What kind of coding efficiency are you expecting? E.g. for the current 2MB filesize, how small do you want your compressed files to be?
Based on that information, people may be able to suggest something. For example, if your images are just color photographs that people will look at, 4:2:0 chroma subsampling will give you a 50% reduction in space without any visually detectable quality loss. You may even be able to keep your 16-bit image depth, if the reduction is sufficient.
Finally, note that you've compared two fundamentally different things in your question:
"top ~40% of the pixels" -- here it sounds like you're talking about contiguous parts of the intensity spectrum (e.g. intensities from 0.6 to 1.0) -- essentially the probability density function of the image.
"close to ~60% of the area in each image" -- here you're talking about the distribution of pixels in the spatial domain.
In general, these two things are unrelated and comparing them is meaningless. There may be an exception for specific image content -- please put up a representative image to make it obvious what you're dealing with.
If you edit your question, I'll have a look and reply if I think of something.