Can I write a file to a specific cluster location? - delphi

You know, when an application opens a file and write to it, the system chooses in which cluster will be stored. I want to choose myself ! Let me tell you what I really want to do... In fact, I don't necessarily want to write anything. I have a HDD with a BAD range of clusters in the middle and I want to mark that space as it is occupied by a file, and eventually set it as a hidden-unmoveable-system one (like page file in windows) so that it won't be accessed anymore. Any ideas on how to do that ?
Later Edit:
I think THIS is my last hope. I just found it, but I need to investigate... Maybe a file could be created anywhere and then relocated to the desired cluster. But that requires writing, and the function may fail if that cluster is bad.

I believe the answer to your specific question: "Can I write a file to a specific cluster location" is, in general, "No".
The reason for that is that the architecture of modern operating systems is layered so that the underlying disk store is accessed at a lower level than you can access, and of course disks can be formatted in different ways so there will be different kernel mode drivers that support different formats. Even so, an intelligent disk controller can remap the addresses used by the kernel mode driver anyway. In short there are too many levels of possible redirection for you to be sure that your intervention is happening at the correct level.
If you are talking about Windows - which you haven't stated but which appears to assumed - then you need to be looking at storage drivers in the kernel (see https://learn.microsoft.com/en-us/windows-hardware/drivers/storage/). I think the closest you could reasonably come would be to write your own Installable File System driver (see https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_ifsk/). This is really a 'filter' as it sits in the IO request chain and can intercept and change IO Request Packets (IRPs). Of course this would run in the kernel, not in userspace, and normally this would be written in C and I note your question is tagged for Delphi.
Your IFS Driver can sit at differnt levels in the request chain. I have used this technique to intercept calls to specific file system locations (paths / file names) and alter the IRP so as to virtualise the request - even calling back to user space from the kernel to resolve how the request should be handled. Using the provided examples implementing basic functionality with an IFS driver is not too involved because it's a filter and not a complete storgae system.
However the very nature of this approach means that another filter can also alter what you are doing in your driver.
You could look at replacing the file system driver that interfaces to the hardware, but I think that's likely to be an excessive task under the circumstances ... and as pointed out already by #fpiette the disk controller hardware can remap your request anyway.
In the days of MSDOS the access to the hardware was simpler and provided by the BIOS which could be hooked to allow the requests to be intercepted. Modern environments aren't that simple anymore. The IFS approach does allow IO to be hooked, but it does not provide the level of control you need.
EDIT regarding suggestion by the OP of using FSCTL_MOVE_FILE
For simple environment this may well do what you want, it is designed to support a defragmentation process.
However I still think there's no guarantee that this actually will do what you want.
You will note from the page you have linked to it states that it is moving one or more virtual clusters of a file from one logical cluster to another within the same volume
This is a code that's passed to the underlying storage drivers which I have referred to above. What the storage layer does is up to the storage layer and will depend on the underlying technology. With more advanced storage there's no guarantee this actually addresses the physical locations which I believe your question is asking about.
However that's entirely dependent on the underlying storage system. For some types of storage relocation by the OS may not be honoured in the same way. As an example consider an enterprise storage array that has a built in data-tiering function. Without the awareness of the OS data will be relocated within the storage based on the tiering algorithms. Also consider that there are technologies which allow data to be directly accessed (like NVMe) and that you are working with 'virtual' and 'logical' clusters, not physical locations.
However, you may well find that in a simple case, with support in the underlying drivers and no remapping done outside the OS and kernel, this does what you need.

Since you problem is to mark bad cluster, you don't need to write any program. Use the command line utility CHKDSK that Windows provides.
I an elevated command prompt (Run as administrator), run the command:
chkdsk /r c:
The check will be done on the next reboot.
Don't forget to read the documentation.

Related

Inspecting port data in real time

Is there any recommended way to inspect/plot the numeric values that are being sent through the ports between drake systems in real-time?. (something similar to rqt_plot in ROS). Apart from the SignalLogger or writing and wiring custom individual plotting Systems, is there any method to access the port values internally?
There's nothing as nice as rqt_plot as far as I know.
If you are able to alter your Diagram before calling DiagramBuilder::Build, you could add an LcmScopeSystem onto any vector-valued output port and then the port's contents will be transmitted on an LCM channel. You can add multiple scopes, but you currently have to add them one by one, ahead of time.
Once the data is onto an LCM channel, then you could use the provided drake-lcm-spy program which has the ability to show (very rudimentary) live plots:
cd drake
bazel build //lcmtypes:drake-lcm-spy
bazel-bin/lcmtypes/drake-lcm-spy &
Also tangentially related would be https://github.com/RobotLocomotion/drake/issues/5857, though that is not on any near-term roadmap.

Does Erlang (and Elixir by extension) provide a way to remove atoms? [duplicate]

This question already has answers here:
How Erlang atoms can be garbage collected
(3 answers)
Closed 3 years ago.
Can atoms be removed from a running Erlang/Elixir system?
Specifically, I am interested in how I would create an application server where modules, representing applications, can be loaded and run on demand and later removed.
I suppose it's more complicated than just removing the atom representing the module in question, as it may be defining more atoms which may be difficult or impossible to track.
Alternatively, I wonder if a module can be run in isolation so that all references it produces can be effectively removed from a running system when it is no longer needed.
EDIT: Just to clarify, because SO thinks this question is answered elsewhere, the question does not relate to garbage collection of atoms, but manual management thereof. To further clarify, here is my comment on Alex's answer below:
I have also thought about spinning up separate instances (nodes?) but
that would be very expensive for on-demand, per-user applications.
What I am trying to do is imitate how an SAP ABAP system works. One
option may be to pre-emptively have a certain number of instances
running, then restart them each time a request is complete. (Again,
pretty expensive though). Another may be to monitor the atom table of
an instance and restart that instance when it is close to the limit.
The drawback I see with running several nodes/instances (although that is what an ABAP system has; several OS processes serving requests from users) is that you lose out on the ability to share cached bytecode between those instances. In an ABAP system, the cache of bytecode (which they call a "load") is accessible to the different processes so when a program is started, it checks the cache first before fetching it from storage.
Unfortunately not, atoms are not destroyed within the VM at all until the VM shuts down. Atom limits are also shared across processes, meaning that spawning a new process to handle atom allocation/deallocation won't work in your case.
You might have some luck spawning a completely separate VM instance by running a separate Erlang application and communicating to it through sockets, although I'm not sure how effective that will be.

How Reduce Disk read write overhead?

I have one website mainly composed on javascript. I hosted it on IIS.
This website request for the images from the particular folder on hard disk and display them to end user.
The request of image are very frequent and fast.
Is there any way to reduce this overhead of disk read operation ?
I heard about memory mapping, where portion of hard disk can be mapped and it will be used as the primary memory.
Can somebody tell me if I am wrong or right, if I am right what are steps to do this.
If I am wrong , is there any other solution for this ?
While memory mapping is viable idea, I would suggest using memcached. It runs as a distinct process, permits horizontal scaling and is tried and tested and in active deployment at some of the most demanding website. A well implemented memcached server can reduce disk access significantly.
It also has bindings for many languages including those over the internet. I assume you want a solution for Java (Your most tags relate to that language). Read this article for installation and other admin tasks. It also has code samples (for Java) that you can start of with.
In pseudocode terms, what you need to do, when you receive a request for, lets say, Moon.jpeg is:
String key = md5_hash(Moon.jpeg); /* Or some other key generation mechanism */
IF key IN memcached
SUPPLY FROM memcached /* No disk access */
ELSE
READ Moon.jpeg FROM DISK
STORE IN memcached ASSOCIATED WITH key
SUPPLY
END
This is a very crude algorithm, you can read more about cache algorithms in this Wiki article.
The wrong direction. You want to reduce IO to slow disks (relative). You would want to have the files mapped in physical memory. In simple scenarios the OS will handle this automagically with file cache. You may look if Windows provides any tunable parameters or at least see what perf metric you can gather.
If I remember correctly (years ago) IIS handle static files very efficiently due a kernel routing driver linked to IIS, but only if it doesnt pass through further ISAPI filters etc.. You can probably find some info related to this on Channel9 etc..
Long term wise you should look to move static assets to a CDN such as CloudFront etc..
Like any problem though... are you sure you have a problem?

Sharing data system wide

Good evening.
I'm looking for a method to share data from my application system-wide, so that other applications could read that data and then do whatever they want with it (e.g. format it for display, use it for logging, etc). The data needs to be updated dynamically in the method itself.
WMI came to mind first, but then you've got the issue of applications pausing while reading from WMI. Additionally, i've no real idea how to setup my own namespace or classes if that's even possible in Delphi.
Using files is another idea, but that could get disk heavy, and it's a real awful method to use for realtime data.
Using a driver would probably be the best option, but that's a little too intrusive on the users end for my liking, and i've no idea on where to even start with it.
WM_COPYDATA would be great, but i'm not sure if that's dynamic enough, and whether it'll be heavy on resources or not.
Using TCP/IP would be the best choice for over the network, but obviously is of little use when run on a single system with no networking requirement.
As you can see, i'm struggling to figure out where to go with this. I don't want to go into one method only to find that it's not gonna work out in the end. Essentially, something like a service, or background process, to record data and then allow other applications to read that data. I'm just unsure on methods. I'd prefer to NOT need elevation/UAC to do this, but if needs be, i'll settle for it.
I'm running in Delphi 2010 for this exercise.
Any ideas?
You want to create some Client-Server architecture, which is also called IPC.
Using WM_COPYDATA is a very good idea. I found out it is very fast, lightweight, and efficient on a local machine. And it can be broadcasted over the system, to all applications at once (to be used with care if some application does not handle it correctly).
You can also share some memory, using memory mapped files. This is may be the fastest IPC option around for huge amount of data, but synchronization is a bit complex (if you want to share more than one buffer at once).
Named pipes are a good candidates for local. They tend to be difficult to implement/configure over a network, due to security issues on modern Windows versions (and are using TCP/IP for network communication - so you should better use directly TCP/IP instead).
My personal advice is that you shall implement your data sharing with abstract classes, able to provide several implementations. You may use WM_COPYDATA first, then switch to named pipes, TCP/IP or HTTP in order to spread your application over a network.
For our Open Source Client-Server ORM, we implemented several protocols, including WM_COPY_DATA, named pipe, HTTP, or direct in-process access. You can take a look at the source code provided for implementation patterns. Here are some benchmarks, to give you data from real implementations:
Client server access:
- Http client keep alive: 3001 assertions passed
first in 7.87ms, done in 153.37ms i.e. 6520/s, average 153us
- Http client multi connect: 3001 assertions passed
first in 151us, done in 305.98ms i.e. 3268/s, average 305us
- Named pipe access: 3003 assertions passed
first in 78.67ms, done in 187.15ms i.e. 5343/s, average 187us
- Local window messages: 3002 assertions passed
first in 148us, done in 112.90ms i.e. 8857/s, average 112us
- Direct in process access: 3001 assertions passed
first in 44us, done in 41.69ms i.e. 23981/s, average 41us
Total failed: 0 / 15014 - Client server access PASSED
As you can see, fastest is direct access, then WM_COPY_DATA, then named pipes, then HTTP (i.e. TCP/IP). Message was around 5 KB of JSON data containing 113 rows, retrieved from server, then parsed on the client 100 times (yes, our framework is fast :) ). For huge blocks of data (like 4 MB), WM_COPY_DATA is slower than named pipes or HTTP-TCP/IP.
Where are several IPC (inter-process communication) methods in Windows. Your question is rather general, I can suggest memory-mapped files to store your shared data and message broadcasting via PostMessage to inform other application that the shared data changed.
If you don't mind running another process, you could use one of the NoSQL databases.
I'm pretty sure that a lot of them won't have Delphi drivers, but some of them have REST drivers and hence can be driven from pretty much anything.
Memcached is an easy way to share data between applications. Memcached is an in-memory key-value store for small chunks of arbitrary data (strings, objects).
A Delphi 2010 client for Memcached can be found on google code:
http://code.google.com/p/delphimemcache/
related question:
Are there any Caching Frameworks for Delphi?
Googling for 'delphi interprocess communication' will give you lots of pointers.
I suggest you take a look at http://madshi.net/, especially MadCodeHook (http://help.madshi.net/madCodeHook.htm)
I have good experience with the product.

Getting real-time variables from a java runtime environment's (virtual machine) memory?

Say I have a couple of java runtime environments running on my system which are used by several applications. I would like to programmatically interact with these applications by reading their memory.
A typical approach would be to directly look into this application's memory, however for java applications this seems to be practically impossible because of the java runtime environment. Instead, one has to look into the memory of the java runtime environment, or debug it.
[ the above is what I think I have learned from several searches on the web, if anything is false, please correct me ]
Note: keep in mind that the application I want to monitor is not owned by me and thus I do not have the source code nor the ability to launch the application in "debug mode" or something.
Now, as this is a non-production project, I would prefer an easy way out: using an existing windows GUI application which can already monitor variables of a java runtime environment and it's applications to programmatically crawl these from this GUI application for usage in my own project. If any such program exists, I would really appreciate the help.
If the above is not possible, how would I (programmatically) retreive these variables otherwise?
It's difficult to answer this precisely without knowing much more about the application involved, its structure etc. Note that objects move around in the JVM's memory, and so you can't monitor the actual application memory directly.
So the first question is, how do you know what you want to monitor without the source code ? e.g. which variables/objects etc.?
Given that you've worked this out, it strikes me that you have two options.
decompile and instrument the application (perhaps statically, perhaps using AOP), and recompile it. This assumes that the application is not obfuscated, and you're not in breach of licensing etc.
wrap the application in a thin layer that uses reflection to identify the variables you're interested in, and tracks the values of those variables as the process executes. I suspect you'll still have to decompile to identify these variables.
You can monitor these values remotely by creating an MBean and exposing via JMX, and monitoring via JConsole. That's pretty trivial compared to the initial step of finding those variables you're interested in.

Resources