How to build LLVM (clang,clang++) for Apple M1? - clang

I am trying to build LLVM compilers so that I can enable OpenMP on the Apple M1.
I am using the LLVM development tree, (since I saw some OpenMP runtime go into that for this recently).
I have ended up with this script to invoke cmake:
# Xcode, Ninja
BUILD_SYSTEM=Ninja
BUILD_TAG=Ninja
cmake ../llvm \
-G$BUILD_SYSTEM -B ${BUILD_TAG}_build \
-DCMAKE_OSX_ARCHITECTURES='arm64' \
-DCMAKE_C_COMPILER=`which clang` \
-DCMAKE_CXX_COMPILER=`which clang++` \
-DCMAKE_BUILD_TYPE=Release \
-DCMAKE_BUILD_WITH_INSTALL_RPATH=1 \
-DCMAKE_INSTALL_PREFIX=$HOME/software/clang-12.0.0/arm64 \
-DLLVM_ENABLE_WERROR=FALSE \
-DLLVM_TARGETS_TO_BUILD='AArch64' \
-DLLVM_ENABLE_PROJECTS='clang;openmp,polly' \
-DLLVM_DEFAULT_TARGET_TRIPLE='aarch64-apple-darwin20.1.0'
The compilers used here are
$ /usr/bin/clang --version
Apple clang version 12.0.0 (clang-1200.0.32.27)
Target: arm64-apple-darwin20.1.0
Thread model: posix
InstalledDir: /Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin
ninja can then successfully build clang, clang++ and the OpenMp runtime and install them. (As simple, Arm64 images targeting Arms64)
$ file ~/software/clang-12.0.0/arm64/bin/clang
/Users/jcownie/software/clang-12.0.0/arm64/bin/clang: Mach-O 64-bit executable arm64
$ ~/software/clang-12.0.0/arm64/bin/clang --version
clang version 12.0.0 (https://github.com/llvm/llvm-project.git 879c15e890b4d25d28ea904e92497f091f796019)
Target: aarch64-apple-darwin20.1.0
Thread model: posix
InstalledDir: /Users/jcownie/software/clang-12.0.0/arm64/bin
Which all looks sane, except that when I try to compile anything with them they are missing the include path to get system headers.
$ ~/software/clang-12.0.0/arm64/bin/clang hello.c
hello.c:1:10: fatal error: 'stdio.h' file not found
#include <stdio.h>
^~~~~~~~~
1 error generated.
So, after all that,
Does anyone know how to fix that include path problem?
Does anyone know how to configure and build a fat binary for the compilers (and libraries) so that the x86_64 embedded compiler targets x86_64 and the aarch64 binary aarch64? (This is what the Xcode clang and clang++ do...)
My attempt at this ended up with a compiler fat binary where both architectures targeted x86_64 :-(
Thanks

You can set -DDEFAULT_SYSROOT=/path/to/MacOSX11.1.sdk at build time or do export SDKROOT=/path/to/MacOSX11.1.sdk at runtime.
You need to compile with clang -arch arm64 -arch x86_64 to get a fat binary out of clang. You need to do this for Apple clang as well.

UPDATED 8 Feb 2021
Homebrew now supports the M1 based Arm machines, so using that is a better answer than the one below.
The info below is potentially still useful if you want to do this on your own, but using brew is likely to be much simpler.
Pre-brew answer
I haven't found a clean solution, but in case it helps anyone else, I do have a horrible hack.
The full recipe, then is configure with this script, then build and install.
# Xcode, Ninja
BUILD_SYSTEM=Ninja
BUILD_TAG=ninja
INSTALLDIR=$HOME/software/clang-12.0.0/arm64
cmake ../llvm \
-G$BUILD_SYSTEM -B ${BUILD_TAG}_build \
-DCMAKE_OSX_ARCHITECTURES='arm64' \
-DCMAKE_C_COMPILER=`which clang` \
-DCMAKE_CXX_COMPILER=`which clang++` \
-DCMAKE_BUILD_TYPE=Release \
-DCMAKE_INSTALL_PREFIX=$INSTALLDIR \
-DLLVM_LOCAL_RPATH=$INSTALLDIR/lib \
-DLLVM_ENABLE_WERROR=FALSE \
-DLLVM_TARGETS_TO_BUILD='AArch64' \
-DLLVM_DEFAULT_TARGET_TRIPLE='aarch64-apple-darwin20.1.0' \
-DDEFAULT_SYSROOT="$(xcrun --show-sdk-path)" \
-DLLVM_ENABLE_PROJECTS='clang;openmp;polly;clang-tools-extra;libcxx;libcxxabi' \
# -DLLVM_ENABLE_PROJECTS='clang;openmp;polly'
That gives a compiler that finds the right headers, but won't link successfully if OpenMP is used because it doesn't pass on any useful -L path or add a necessary rpath.
To overcome that I created a small shell script that sits in my ~/bin, at the front of my $PATH, which adds those extra linker flags.
#
# A truly awful hack, but it seems necessary.
# Install this with execute permissions as clang and clang++ in
# a directory early in your path, so that it is executed when clang or
# clang++ is needed.
#
# For brew...
INSTALLDIR=/usr/local/opt/llvm
# For a local build.
INSTALLDIR=${HOME}/software/clang-12.0.0/arm64/
# Find out the name of this file, and then invoke the same file in the
# compiler installation, adding the necessary linker directives
CMD=`echo $0 | sed "s/\/.*\///"`
${INSTALLDIR}/bin/${CMD} -L${INSTALLDIR}/lib -Wl,-rpath,${INSTALLDIR}/lib $*
I am not recommending this particularly; there should clearly be a better way to make it work, but it'll do for now, and lets me get back to using the compiler rather than building it!

I was able to build with -DDEFAULT_SYSROOT="$(xcrun --show-sdk-path)" -DCMAKE_INSTALL_PREFIX=/Users/foo/lokal/ and install into the lokal/bin lokal/lib path. Once that is done you can use LD_LIBRARY_PATH=/Users/foo/lokal/lib and all the libraries should be found without mucking with anything else rpath related.

Related

How to cross-compile Coreutils or other GNU projects with clang/LLVM?

I have a tough need to compile Coreutils with llvm for other arch: arm/aarch64/mips/mips32/ppc/ppc32...
Since I install all the gcc-cross tools like mips-linux-gnu, powerpc64-linux-gnu and if I have a simple C program like that test.c
#include<stdio.h>
int main(){
printf("hello!");
return 0;
}
I can compile it to the arch, i.e.
clang --target=mips64-linux-gnuabi64 test.c -o test-mips64
➜ tests file test-mips64
test-mips64: ELF 64-bit MSB executable, MIPS, MIPS64 rel2 version 1 (SYSV), dynamically linked, interpreter /lib64/ld.so.1, BuildID[sha1]=7b33d55a0d08e6cd18d966341590dc351e346a78, for GNU/Linux 3.2.0, not stripped
I try to the same way for compile Coreutils that try to set
export CC=clang
export CXX=clang++
CFLAGS = "--target=mips64-linux-gnuabi64"
./configure --host=mips64-linux-gnuabi64
Howerver, every time got errors in configure or make...
How should I set the configure? Can I easily compile Coreuntils with llvm for other archs?
It's a bit tricky to get the command-line options right for cross-compiling. I got it to work with the commands below, assuming you're working on a Debian-based system (like Debian or Ubuntu). Here are the steps.
Install gcc-mips64-linux-gnuabi64 and gcc-powerpc64-linux-gnu.
Choose the correct arguments for CFLAGS
-B/usr/mips64-linux-gnuabi64/bin/ to indicate we want to use the linker ld within that directory. Do the same for powerpc.
--target=mips64-linux-gnuabi64 to indicate what our target for compilation is. Do the same for powerpc.
-I/usr/mips64-linux-gnuabi64/include to include header files. Do the same for powerpc.
Use ./configure --host=mips64-linux-gnuabi to configure for mips64 and ./configure --host=powerpc64-linux-gnueabi to configure for powerpc64.
Here are the commands to compile for mips64:
make clean
CFLAGS="-B/usr/mips64-linux-gnuabi64/bin/ --target=mips64-linux-gnuabi64 -I/usr/mips64-linux-gnuabi64/include" \
./configure --host=mips64-linux-gnuabi
make
And the commands to compile for powerpc64:
make clean
CFLAGS="-B/usr/powerpc64-linux-gnu/bin/ --target=powerpc64-linux-gnueabi -I/usr/powerpc64-linux-gnu/include" \
./configure --host=powerpc64-linux-gnueabi
make
Here is the output of file ./src/ls to demonstrate that it is a powerpc64 executable:
$ file ./src/ls
./src/ls: ELF 64-bit MSB executable, 64-bit PowerPC or cisco 7500, version 1 (SYSV), dynamically linked, interpreter /lib64/ld64.so.1, for GNU/Linux 3.2.0, BuildID[sha1]=97fe33981ca0112160f44a6fb678d6dc1b462114, not stripped
Below is a Dockerfile that can be used to reproducibly cross-compile coreutils for mips64 and powerpc64.
# Cross-compile GNU coreutils for mips64 and powerpc64 using clang.
# With help from https://medium.com/#wolfv/cross-compiling-arm-on-travis-using-clang-and-qemu-2b9702d7c6f3
FROM debian:buster
# Install compile-time dependencies.
RUN apt-get update \
&& apt-get install --yes \
clang \
curl \
gcc-mips64-linux-gnuabi64 \
gcc-powerpc64-linux-gnu \
make \
perl \
&& rm -rf /var/lib/apt/lists/*
# Download source code for release.
WORKDIR /tmp/coreutils
RUN curl -fsSL https://ftp.gnu.org/gnu/coreutils/coreutils-8.32.tar.xz \
| tar xJ --strip-components 1
# Compile and install for mips64.
RUN CFLAGS="-B/usr/mips64-linux-gnuabi64/bin/ --target=mips64-linux-gnuabi64 -I/usr/mips64-linux-gnuabi64/include" \
./configure --host=mips64-linux-gnuabi --prefix=/opt/coreutils-mips \
&& make \
&& make install
# Compile and install for powerpc64.
RUN make clean \
&& CFLAGS="-B/usr/powerpc64-linux-gnu/bin/ --target=powerpc64-linux-gnueabi -I/usr/powerpc64-linux-gnu/include" \
./configure --host=powerpc64-linux-gnueabi --prefix=/opt/coreutils-powerpc64 \
&& make \
&& make install
# Keep only the compiled programs from the previous stage.
FROM debian:buster
COPY --from=0 /opt /opt
I am current working on a simple build tool in Python that maybe help you.
Unfortunately, still at moment, lacks clang implementation, but works fine with GCC and MSVC.
Basically the thing mix Json parameters files to generate command line building.
CppMagic

where is clang executables after building LLVM?

Environment: Ubuntu 18.04 bionic.
after git clone llvm-project from https://github.com/llvm/llvm-project.
I generated build credentials using Cmake commandline like this:
cmake -DLLVM_TARGETS_TO_BUILD=X86 \
-DLLVM_TARGET_ARCH=X86 \
-DCMAKE_BUILD_TYPE="Release" \
-DLLVM_BUILD_EXAMPLES=1 \
-DCLANG_BUILD_EXAMPLES=1 \
-G "Unix Makefiles" \
../llvm/
after makefile was generated, I then use make to build the project make -j8. somehow after build completion, clang and clang++ etc. are nowhere to be found in /build/bin/.
To my knowledge, if I didn't specify LLVM_ENABLE_PROJECTs, it will build LLVM and clang both by default. why are clang executables missing?
You need to explicitly specify LLVM_ENABLE_PROJECT and put the source code folder of clang in the same level of llvm source folder. The folder name must match the value of LLVM_ENABLE_PROJECT

Enabling the gold linker on Freebsd

I have been trying to enable the gold linker on FreeBSD to use the link time optimizations. I made gold from the binutils under /usr/ports. After building binutils using make -k install clean i got ld under /usr/bin and in the directory /usr/local/bin i got ld, ld.gold and ld.bfd.
Now while trying to use link time optimization for the simple example programs here http://llvm.org/docs/GoldPlugin.html (a.c and b.c under the heading 'Examples of Link Time Optimization') i entered the four commands as follows:
clang -flto a.c -c -o a.o
ar q a.a a.o
clang b.c -c -o b.o
clang -flto a.a b.o -o main
I got the following error:
usr/bin/ld: unrecogonized option '-plugin'
usr/bin/ld: use the --help option for usage information
clang: error: linker command failed with exit code 1 (use -v to see invocation)
Is there the problem with the linker that ld.gold is not being called. Should I replace the ld with ld.gold? Does the linker looks in the right directiry for the .so plugins?
The LLVMgold.so and libLTO.so shared objects are in the directory /usr/local/llvm-devel/lib/.
I cannot find the directory where clang is installed. I am not sure where to make the bfd-plugins directory and add the symlinks to LLVMgold.so and libLTO.so.
I am using freebsd 10.1 release. How to enable the gold linker for link time optimizations?
also how can I enable it to be the default linker?
You may want to use ld.gold instead of ld. It is installed at /usr/local/bin/ld.gold. If you are using a Makefile, it would work by setting LD variable to ld.gold, either by modifying your Makefile or specifying it on command line. Example in case you are using lang/clang37:
gmake all CC=clang37 LD=ld.gold
EDIT:
It would be even more neat if you add -fuse-ld=gold to your LDFLAGS:
LDFLAGS=-fuse-ld=gold
I'm not sure ld.bfd allows plugins, but I could be wrong.
Your /usr/bin/ld should be a symlink to whatever linker you want. You can change which linker is used by using binutils-config. Check the man-page here: http://www.linuxhowtos.org/manpages/8/binutils-config.htm. I realise this is a Linux link, but it's directed at binutils itself rather than linux-specifically.
It should be something along the lines binutils-config --gold.
On my Gentoo box it is binutils --linker=gold
EDIT: As pointed out, binutils-config doesn't work on BSD it seems. You can still manually update the symlinks though, the downside is that there might be a few of them.
You can find out which ld is used by your compiler by using gcc -print-prog-name=ld or clang -print-prog-name=ld. The file printed should be a symlink you can re-create to point to ld.gold as oposed to ld.bfd.

Can't compile CUDA samples: ld: library not found for -lgomp clang: error: linker command failed with exit code 1 [duplicate]

I'm trying to get openmp to run in my program on Mavericks, however when I try to compile using the flag -fopenmp I get the following error:
ld: library not found for -lgomp
clang: error: linker command failed with exit code 1 (use -v to see invocation)
The command I am running is:
gcc myProgram.cpp -fopenmp -o myProgram
Also, when I run gcc I get Clang warnings which I find to be very strange. And looking into /usr/bin/gcc it does not appear to link to Clang.
Any suggestions on how to fix my Clang errors and get openmp to compile?
The gcc command in the latest Xcode suite is no longer the GCC frontend to LLVM (based on the very old GCC 4.2.1) but rather a symlink to clang. Clang does not (yet) support OpenMP. You have to install separately another version of GCC, e.g. by following this tutorial or by using any of the available software package management systems like MacPorts and Homebrew.
I just recently attacked this problem and have scripted the process of getting everything working based on the official instructions.
The script will download everything into ~/code for easy maintenance and will append the correct environment variables to your ~/.profile file. For advanced users, pick a nice location you want the lib, bin and include installed and move them manually. The script depends on knowing the latest OpenMP runtime from Intel, which can be altered at the top of the script.
The script should work out of the box with vanilla Mavericks, except for one small problem. In the OpenML runtime make script, it does not reliably accept clang when specified and continues with the default GCC. As such, if you don't have GCC installed (which is not normal on out of the box Mavericks), it will fail to build. To fix this, you must comment out two lines (as noted in the script) based on the libomp_20131209_oss.tgz build of OpenMP. Newer builds of OpenML might break this script, so use at your own peril on newer versions.
Simply save this script into a file, run 'chmod +x filename.sh', and run './filename.sh' from terminal. It will take a while to build LLVM and Clang, so be patient.
EDIT: This script will most likely fail on Yosemite and I am having issues using the built clang2 after the update to the dev builds of OSX 10.10.
INTEL_OPENMP_LATEST_BUILD_LINK=https://www.openmprtl.org/sites/default/files/libomp_20131209_oss.tgz
DEST_FOLDER = ~/code
CLANG_INCLUDE=${DEST_FOLDER}/llvm/include
CLANG_BIN=${DEST_FOLDER}/llvm/build/Debug+Asserts/bin
CLANG_LIB=${DEST_FOLDER}/llvm/build/Debug+Asserts/lib
OPENMP_INCLUDE=${DEST_FOLDER}/libomp_oss/exports/common/include
OPENMP_LIB=${DEST_FOLDER}/libomp_oss/exports/mac_32e/lib.thin
mkdir ${DEST_FOLDER}
cd ${DEST_FOLDER}
git clone https://github.com/clang-omp/llvm
git clone https://github.com/clang-omp/compiler-rt llvm/projects/compiler-rt
git clone -b clang-omp https://github.com/clang-omp/clang llvm/tools/clang
cd llvm
mkdir build
cd build
../configure
make
cd Debug+Asserts/bin
mv clang clang2
rm -rf clang++
ln -s clang2 clang2++
echo "LLVM+Clang+OpenMP Include Path : " ${CLANG_INCLUDE}
echo "LLVM+Clang+OpenMP Bin Path : " ${CLANG_BIN}
echo "LLVM+Clang+OpenMP Lib Path : " ${CLANG_LIB}
cd ${DEST_FOLDER}
curl ${INTEL_OPENMP_LATEST_BUILD_LINK} -o libomp_oss_temp.tgz
gunzip -c libomp_oss_temp.tgz | tar xopf -
rm -rf libomp_oss_temp.tgz
cd libomp_oss
echo "You need to do one or two things:"
echo "1.) [Required] Comment out line 433 from libomp_oss/src/makefile.mk"
echo "2.) [Optional] If you do not have GCC installed (not normal on vanilla Mavericks), you must comment out lines 450-451 in libomp_oss/tools/check-tools.pl. Have you done this or want to compile anyway?"
select yn in "Yes" "No"; do
case $yn in
Yes ) make compiler=clang; break;;
No ) exit;;
esac
done
echo "OpenMP Runtime Include Path : " ${OPENMP_INCLUDE}
echo "OpenMP Runtime Lib Path : " ${OPENMP_LIB}
(echo 'export PATH='${CLANG_BIN}':$PATH';
echo 'export C_INCLUDE_PATH='${CLANG_INCLUDE}':'${OPENMP_INCLUDE}':$C_INCLUDE_PATH';
echo 'export CPLUS_INCLUDE_PATH='${CLANG_INCLUDE}':'${OPENMP_INCLUDE}':$CPLUS_INCLUDE_PATH';
echo 'export LIBRARY_PATH='${CLANG_LIB}':'${OPENMP_LIB}':$LIBRARY_PATH';
echo 'export DYLD_LIBRARY_PATH='${CLANG_LIB}':'${OPENMP_LIB}':$DYLD_LIBRARY_PATH}') >> ~/.profile
source ~/.profile
echo "LLVM+Clang+OpenMP is now accessible through [ clang2 ] via terminal and does not conflict with Apple's clang"
If you are running homebrew you can fix this problem by calling:
brew install clang-omp
The compiler will be available under clang-omp++ name
Just worked through this problem. Here's the answer plus how to get it worked with Xcode.
Grab the latest version of openMP runtime library from
https://www.openmprtl.org/download
unzip and compile it by
mkdir build && cd build && cmake .. && make && sudo make install
install it by
sudo cp ./libiomp5.dylib /usr/lib/
sudo cp ./omp.h /Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/include/
Grab openmp/clang from Git following the instructions on http://clang-omp.github.io/
compile openmp/clang
cd llvm && mkdir build && cd build && ../configure --enable-optimized && make -j
sudo make install
normally it would install clang/clang++ into /usr/local/bin, we need replace the Apple clang with our version
cd /usr/bin
sudo mv clang clang-apple
sudo mv clang++ clang++-apple
sudo ln -s /usr/local/bin/clang ./clang
sudo ln -s /usr/local/bin/clang++ ./clang++
cd /Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin
sudo mv clang clang-apple
sudo mv clang++ clang++-apple
sudo ln -s /usr/local/bin/clang ./clang
sudo ln -s /usr/local/bin/clang++ ./clang++
cd /Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/include/c++/v1
sudo mv -f * ../../
Create a project in Xcode, using the Hello World code on clang-openmp website for test. After created, add "-fopenmp" to Custom Compiler Flags -> Other C Flags in project settings; add /usr/lib/libiomp5.dylib to the build phases of project (project settings -> Build Phases -> Drag /usr/lib/libiomp5.dylib into Link Binary with Libraries)
It should work. Yosemite + Xcode 6 is tested.
Note: the custom clang is NOT as stable as Apple's. Switch back if you meet strange instruction error after compiled.

Errors due to vowpal wabbit's dependencies on boost library

I'm trying real hard to install vowpal wobbit and it fails when i run the make file, throwing:
cd library; make; cd ..
g++ -g -o ezexample temp2.cc -L ../vowpalwabbit -l vw -l allreduce -l boost_program_options -l z -l pthread
ld: library not found for -lboost_program_options collect2: ld returned 1 exit status make[1]: *** [ezexample] Error 1'
I then added the links to the boost library here by specifying -L/usr/local/lib
Now I get the following error:
g++ -g -o ezexample temp2.cc -L/usr/local/lib ../vowpalwabbit -l vw -l allreduce -l boost_program_options -l z -l pthread
ld: library not found for -lvw
collect2: ld returned 1 exit status
make: *** [ezexample] Error 1
I happened to get everything working on OS X 10.7 as follows:
Make sure you have a working Boost installation. As indicated on the Getting started page, usually we only need header files, but some Boost libraries must be built separately, including the program_options library which is used to process options from command line or config file. Go into your boost folder, and then at your shell prompt:
$ ./bootstrap.sh
$ ./bjam
This will compile and build everything. You should now have a bin.v2/ directory in your boost directory, with all built libraries for your system (static and threaded libs).
$ ls bin.v2/libs/
date_time iostreams python serialization test
filesystem math random signals thread
graph program_options regex system wave
More importantly, extra Boost libraries are made available in the stage/lib/ directory. For me, these are Mach-O 64-bit dynamically linked shared library x86_64.
The include path should be your_install_dir/boost_x_xx_x, where boost_x_xx_x is the basename of your working Boost. (I personally have boost_1_46_1 in /usr/local/share/ and I symlinked it to /usr/local/share/boost to avoid having to remember version number.) The library path (for linking) should read your_install_dir/boost_x_xx_x/stage/lib. However, it might be best to symlink or copy (which is what I did) everything in usual place, i.e. /usr/local/include/boost for header files, and /usr/local/lib for libraries.
Edit the Makefile from the vowpal_wabbit directory, and change the include/library paths to reflect your current installation. The Makefile should look like this (first 12 lines):
COMPILER = g++
UNAME := $(shell uname)
ifeq ($(UNAME), FreeBSD)
LIBS = -l boost_program_options -l pthread -l z -l compat
BOOST_INCLUDE = /usr/local/include
BOOST_LIBRARY = /usr/local/lib
else
LIBS = -l boost_program_options -l pthread -l z
BOOST_INCLUDE = /usr/local/share/boost # change path to reflect yours
BOOST_LIBRARY = /usr/local/share/boost/stage/lib # idem
endif
Then, you are ready to compile vowpal_wabbit (make clean in case you already compiled it):
$ make
$ ./vw --version
6.1
$ make test
You can also install vowpal wabbit on OS X using brew:
brew install vowpal-wabbit
Or you can just install boost, and then install vw from the github repo.
brew install boost
For installation on CentOS 7 (6.5 perl version is too old for latest vw source code), I've found the instructions at http://wkoplitz.blogspot.be/2012/12/vowpal-wabbit-on-centos.html to work fine:
yum install zlib-devel boost-devel
yum groupinstall "Development Tools"
git clone git://github.com/JohnLangford/vowpal_wabbit.git
cd vowpal_wabbit
./autogen.sh
make
make test
Good news:
As of the latest release VowpalWabbit version 9.1.0, vw no longer relies on Boost program_options
From the release highlights:
Removal of Boost Program Options dependency
For a long time we have depended on Boost Program Options
for command line options parsing. In this release, we have > replaced this dependency with our own implementation of
command line parsing. Apart from one place where we depend > on Boost Math in standalone mode, this means that VW core
and the command line tool are free of Boost dependencies
hopefully making the code a bit easier to build and package.
Vowpal Wabbit 9.1.0 release notes

Resources