Why doesn't this Swift code compile?
protocol P { }
struct S: P { }
let arr:[P] = [ S() ]
extension Array where Element : P {
func test<T>() -> [T] {
return []
}
}
let result : [S] = arr.test()
The compiler says: "Type P does not conform to protocol P" (or, in later versions of Swift, "Using 'P' as a concrete type conforming to protocol 'P' is not supported.").
Why not? This feels like a hole in the language, somehow. I realize that the problem stems from declaring the array arr as an array of a protocol type, but is that an unreasonable thing to do? I thought protocols were there exactly to help supply structs with something like a type hierarchy?
Why don't protocols conform to themselves?
Allowing protocols to conform to themselves in the general case is unsound. The problem lies with static protocol requirements.
These include:
static methods and properties
Initialisers
Associated types (although these currently prevent the use of a protocol as an actual type)
We can access these requirements on a generic placeholder T where T : P – however we cannot access them on the protocol type itself, as there's no concrete conforming type to forward onto. Therefore we cannot allow T to be P.
Consider what would happen in the following example if we allowed the Array extension to be applicable to [P]:
protocol P {
init()
}
struct S : P {}
struct S1 : P {}
extension Array where Element : P {
mutating func appendNew() {
// If Element is P, we cannot possibly construct a new instance of it, as you cannot
// construct an instance of a protocol.
append(Element())
}
}
var arr: [P] = [S(), S1()]
// error: Using 'P' as a concrete type conforming to protocol 'P' is not supported
arr.appendNew()
We cannot possibly call appendNew() on a [P], because P (the Element) is not a concrete type and therefore cannot be instantiated. It must be called on an array with concrete-typed elements, where that type conforms to P.
It's a similar story with static method and property requirements:
protocol P {
static func foo()
static var bar: Int { get }
}
struct SomeGeneric<T : P> {
func baz() {
// If T is P, what's the value of bar? There isn't one – because there's no
// implementation of bar's getter defined on P itself.
print(T.bar)
T.foo() // If T is P, what method are we calling here?
}
}
// error: Using 'P' as a concrete type conforming to protocol 'P' is not supported
SomeGeneric<P>().baz()
We cannot talk in terms of SomeGeneric<P>. We need concrete implementations of the static protocol requirements (notice how there are no implementations of foo() or bar defined in the above example). Although we can define implementations of these requirements in a P extension, these are defined only for the concrete types that conform to P – you still cannot call them on P itself.
Because of this, Swift just completely disallows us from using a protocol as a type that conforms to itself – because when that protocol has static requirements, it doesn't.
Instance protocol requirements aren't problematic, as you must call them on an actual instance that conforms to the protocol (and therefore must have implemented the requirements). So when calling a requirement on an instance typed as P, we can just forward that call onto the underlying concrete type's implementation of that requirement.
However making special exceptions for the rule in this case could lead to surprising inconsistencies in how protocols are treated by generic code. Although that being said, the situation isn't too dissimilar to associatedtype requirements – which (currently) prevent you from using a protocol as a type. Having a restriction that prevents you from using a protocol as a type that conforms to itself when it has static requirements could be an option for a future version of the language
Edit: And as explored below, this does look like what the Swift team are aiming for.
#objc protocols
And in fact, actually that's exactly how the language treats #objc protocols. When they don't have static requirements, they conform to themselves.
The following compiles just fine:
import Foundation
#objc protocol P {
func foo()
}
class C : P {
func foo() {
print("C's foo called!")
}
}
func baz<T : P>(_ t: T) {
t.foo()
}
let c: P = C()
baz(c)
baz requires that T conforms to P; but we can substitute in P for T because P doesn't have static requirements. If we add a static requirement to P, the example no longer compiles:
import Foundation
#objc protocol P {
static func bar()
func foo()
}
class C : P {
static func bar() {
print("C's bar called")
}
func foo() {
print("C's foo called!")
}
}
func baz<T : P>(_ t: T) {
t.foo()
}
let c: P = C()
baz(c) // error: Cannot invoke 'baz' with an argument list of type '(P)'
So one workaround to to this problem is to make your protocol #objc. Granted, this isn't an ideal workaround in many cases, as it forces your conforming types to be classes, as well as requiring the Obj-C runtime, therefore not making it viable on non-Apple platforms such as Linux.
But I suspect that this limitation is (one of) the primary reasons why the language already implements 'protocol without static requirements conforms to itself' for #objc protocols. Generic code written around them can be significantly simplified by the compiler.
Why? Because #objc protocol-typed values are effectively just class references whose requirements are dispatched using objc_msgSend. On the flip side, non-#objc protocol-typed values are more complicated, as they carry around both value and witness tables in order to both manage the memory of their (potentially indirectly stored) wrapped value and to determine what implementations to call for the different requirements, respectively.
Because of this simplified representation for #objc protocols, a value of such a protocol type P can share the same memory representation as a 'generic value' of type some generic placeholder T : P, presumably making it easy for the Swift team to allow the self-conformance. The same isn't true for non-#objc protocols however as such generic values don't currently carry value or protocol witness tables.
However this feature is intentional and is hopefully to be rolled out to non-#objc protocols, as confirmed by Swift team member Slava Pestov in the comments of SR-55 in response to your query about it (prompted by this question):
Matt Neuburg added a comment - 7 Sep 2017 1:33 PM
This does compile:
#objc protocol P {}
class C: P {}
func process<T: P>(item: T) -> T { return item }
func f(image: P) { let processed: P = process(item:image) }
Adding #objc makes it compile; removing it makes it not compile again.
Some of us over on Stack Overflow find this surprising and would like
to know whether that's deliberate or a buggy edge-case.
Slava Pestov added a comment - 7 Sep 2017 1:53 PM
It's deliberate – lifting this restriction is what this bug is about.
Like I said it's tricky and we don't have any concrete plans yet.
So hopefully it's something that language will one day support for non-#objc protocols as well.
But what current solutions are there for non-#objc protocols?
Implementing extensions with protocol constraints
In Swift 3.1, if you want an extension with a constraint that a given generic placeholder or associated type must be a given protocol type (not just a concrete type that conforms to that protocol) – you can simply define this with an == constraint.
For example, we could write your array extension as:
extension Array where Element == P {
func test<T>() -> [T] {
return []
}
}
let arr: [P] = [S()]
let result: [S] = arr.test()
Of course, this now prevents us from calling it on an array with concrete type elements that conform to P. We could solve this by just defining an additional extension for when Element : P, and just forward onto the == P extension:
extension Array where Element : P {
func test<T>() -> [T] {
return (self as [P]).test()
}
}
let arr = [S()]
let result: [S] = arr.test()
However it's worth noting that this will perform an O(n) conversion of the array to a [P], as each element will have to be boxed in an existential container. If performance is an issue, you can simply solve this by re-implementing the extension method. This isn't an entirely satisfactory solution – hopefully a future version of the language will include a way to express a 'protocol type or conforms to protocol type' constraint.
Prior to Swift 3.1, the most general way of achieving this, as Rob shows in his answer, is to simply build a wrapper type for a [P], which you can then define your extension method(s) on.
Passing a protocol-typed instance to a constrained generic placeholder
Consider the following (contrived, but not uncommon) situation:
protocol P {
var bar: Int { get set }
func foo(str: String)
}
struct S : P {
var bar: Int
func foo(str: String) {/* ... */}
}
func takesConcreteP<T : P>(_ t: T) {/* ... */}
let p: P = S(bar: 5)
// error: Cannot invoke 'takesConcreteP' with an argument list of type '(P)'
takesConcreteP(p)
We cannot pass p to takesConcreteP(_:), as we cannot currently substitute P for a generic placeholder T : P. Let's take a look at a couple of ways in which we can solve this problem.
1. Opening existentials
Rather than attempting to substitute P for T : P, what if we could dig into the underlying concrete type that the P typed value was wrapping and substitute that instead? Unfortunately, this requires a language feature called opening existentials, which currently isn't directly available to users.
However, Swift does implicitly open existentials (protocol-typed values) when accessing members on them (i.e it digs out the runtime type and makes it accessible in the form of a generic placeholder). We can exploit this fact in a protocol extension on P:
extension P {
func callTakesConcreteP/*<Self : P>*/(/*self: Self*/) {
takesConcreteP(self)
}
}
Note the implicit generic Self placeholder that the extension method takes, which is used to type the implicit self parameter – this happens behind the scenes with all protocol extension members. When calling such a method on a protocol typed value P, Swift digs out the underlying concrete type, and uses this to satisfy the Self generic placeholder. This is why we're able to call takesConcreteP(_:) with self – we're satisfying T with Self.
This means that we can now say:
p.callTakesConcreteP()
And takesConcreteP(_:) gets called with its generic placeholder T being satisfied by the underlying concrete type (in this case S). Note that this isn't "protocols conforming to themselves", as we're substituting a concrete type rather than P – try adding a static requirement to the protocol and seeing what happens when you call it from within takesConcreteP(_:).
If Swift continues to disallow protocols from conforming to themselves, the next best alternative would be implicitly opening existentials when attempting to pass them as arguments to parameters of generic type – effectively doing exactly what our protocol extension trampoline did, just without the boilerplate.
However note that opening existentials isn't a general solution to the problem of protocols not conforming to themselves. It doesn't deal with heterogenous collections of protocol-typed values, which may all have different underlying concrete types. For example, consider:
struct Q : P {
var bar: Int
func foo(str: String) {}
}
// The placeholder `T` must be satisfied by a single type
func takesConcreteArrayOfP<T : P>(_ t: [T]) {}
// ...but an array of `P` could have elements of different underlying concrete types.
let array: [P] = [S(bar: 1), Q(bar: 2)]
// So there's no sensible concrete type we can substitute for `T`.
takesConcreteArrayOfP(array)
For the same reasons, a function with multiple T parameters would also be problematic, as the parameters must take arguments of the same type – however if we have two P values, there's no way we can guarantee at compile time that they both have the same underlying concrete type.
In order to solve this problem, we can use a type eraser.
2. Build a type eraser
As Rob says, a type eraser, is the most general solution to the problem of protocols not conforming to themselves. They allow us to wrap a protocol-typed instance in a concrete type that conforms to that protocol, by forwarding the instance requirements to the underlying instance.
So, let's build a type erasing box that forwards P's instance requirements onto an underlying arbitrary instance that conforms to P:
struct AnyP : P {
private var base: P
init(_ base: P) {
self.base = base
}
var bar: Int {
get { return base.bar }
set { base.bar = newValue }
}
func foo(str: String) { base.foo(str: str) }
}
Now we can just talk in terms of AnyP instead of P:
let p = AnyP(S(bar: 5))
takesConcreteP(p)
// example from #1...
let array = [AnyP(S(bar: 1)), AnyP(Q(bar: 2))]
takesConcreteArrayOfP(array)
Now, consider for a moment just why we had to build that box. As we discussed early, Swift needs a concrete type for cases where the protocol has static requirements. Consider if P had a static requirement – we would have needed to implement that in AnyP. But what should it have been implemented as? We're dealing with arbitrary instances that conform to P here – we don't know about how their underlying concrete types implement the static requirements, therefore we cannot meaningfully express this in AnyP.
Therefore, the solution in this case is only really useful in the case of instance protocol requirements. In the general case, we still cannot treat P as a concrete type that conforms to P.
EDIT: Eighteen more months of working w/ Swift, another major release (that provides a new diagnostic), and a comment from #AyBayBay makes me want to rewrite this answer. The new diagnostic is:
"Using 'P' as a concrete type conforming to protocol 'P' is not supported."
That actually makes this whole thing a lot clearer. This extension:
extension Array where Element : P {
doesn't apply when Element == P since P is not considered a concrete conformance of P. (The "put it in a box" solution below is still the most general solution.)
Old Answer:
It's yet another case of metatypes. Swift really wants you to get to a concrete type for most non-trivial things. [P] isn't a concrete type (you can't allocate a block of memory of known size for P). (I don't think that's actually true; you can absolutely create something of size P because it's done via indirection.) I don't think there's any evidence that this is a case of "shouldn't" work. This looks very much like one of their "doesn't work yet" cases. (Unfortunately it's almost impossible to get Apple to confirm the difference between those cases.) The fact that Array<P> can be a variable type (where Array cannot) indicates that they've already done some work in this direction, but Swift metatypes have lots of sharp edges and unimplemented cases. I don't think you're going to get a better "why" answer than that. "Because the compiler doesn't allow it." (Unsatisfying, I know. My whole Swift life…)
The solution is almost always to put things in a box. We build a type-eraser.
protocol P { }
struct S: P { }
struct AnyPArray {
var array: [P]
init(_ array:[P]) { self.array = array }
}
extension AnyPArray {
func test<T>() -> [T] {
return []
}
}
let arr = AnyPArray([S()])
let result: [S] = arr.test()
When Swift allows you to do this directly (which I do expect eventually), it will likely just be by creating this box for you automatically. Recursive enums had exactly this history. You had to box them and it was incredibly annoying and restricting, and then finally the compiler added indirect to do the same thing more automatically.
If you extend CollectionType protocol instead of Array and constraint by protocol as a concrete type, you can rewrite the previous code as follows.
protocol P { }
struct S: P { }
let arr:[P] = [ S() ]
extension CollectionType where Generator.Element == P {
func test<T>() -> [T] {
return []
}
}
let result : [S] = arr.test()
Related
When I work on the opaque types, I read this section in the official documents of Swift.
Another problem with this approach is that the shape transformations
don’t nest. The result of flipping a triangle is a value of type
Shape, and the protoFlip(:) function takes an argument of some type
that conforms to the Shape protocol. However, a value of a protocol
type doesn’t conform to that protocol; the value returned by
protoFlip(:) doesn’t conform to Shape. This means code like
protoFlip(protoFlip(smallTriange)) that applies multiple
transformations is invalid because the flipped shape isn’t a valid
argument to protoFlip(_:).
This part made me consider about nested functions whose return type is protocol and I wanted to play about the protocol return types in the playground. As a result, I created a protocol called Example and also, a non generic and generic concrete types that conform to Example protocol. I kept "sample" method implementations which is protocol requirement as simple as possible because of focusing return types.
protocol Example {
func sample(text: String) -> String
}
struct ExampleStruct: Example {
func sample(text: String) -> String {
return text
}
}
struct ExampleGenericStruct<T: Example>: Example {
var t: T
func sample(text: String) -> String {
return t.sample(text: "\n")
}
}
After that, I created a generic function which has an argument constraint by Example protocol and returns Example protocol. Then, I tested my function as nested.
func genericTestExample<T: Example>(example: T) -> Example {
return ExampleGenericStruct(t: example)
}
genericTestExample(example: genericTestExample(example: ExampleStruct()))
I got this error:
Value of protocol type 'Example' cannot conform to 'Example'; only
struct/enum/class types can conform to protocols
This is what I expected. Function returns the protocol itself, not the concrete type that conforms it.
Finally, I wrote an another function.
func testExample(example: Example) -> Example {
if example is ExampleStruct {
return example
}
return ExampleGenericStruct(t: ExampleStruct())
}
When I run the code, I could nest this function successfully.
testExample(example: testExample(example: ExampleStruct()))
I can pass any value to both genericTestExample and testExample functions as long as it conforms to Example protocol. Also, they have the same protocol return type. I don't know why I could nest testExample function while I could not nest genericTestExample function or vise versa.
swift 5.4
2021-09-27 08:36 UTC
#ceylanburak
you should use the Opaque Types in swift.
// some Example is **Opaque Types** !!!
func genericTestExample<T: Example>(example: T) -> some Example {
return ExampleGenericStruct(t: example)
}
now follow your previous mind
genericTestExample(example: genericTestExample(example: ExampleStruct()))
and it equals to
let e1: some Example = genericTestExample(example: ExampleStruct())
genericTestExample(example: e1)
This question already has answers here:
What is the in-practice difference between generic and protocol-typed function parameters?
(2 answers)
Closed 5 years ago.
I studied about generics but i still have no understanding, why to use them, when we can use protocols instead?
For example, examine following function:
public static func delete<T>(entity: T, auth: Auth) -> Observable<Void> where T: MSRequestEntity, T: DictConvertable {
// function do something
}
Ok, we have generic entity T, that is conform to MSRequestEntity and DictConvertable.
But we can simply rewrite this like that:
public static func delete(entity: MSRequestEntity & DictConvertable, auth: Auth) -> Observable<Void> {
// function do something
}
So, my question is, in what case should i use generics? All of situations i have imaging could easily be handled with protocols.
In the case you have provided you are correct. It doesn't necessarily add anything by making it generic.
But take the example where you have some protocol MyProtocol and you want to create a function that takes two of these and returns a third. But the function only works if first and second are of the same type...
func combine(first: MyProtocol, second: MyProtocol) -> MyProtocol {
// do some combining here.
}
Now it's less well defined because first and second can be of different types here. The only thing that is required is that they conform to the protocol. And what is the return type?
Now consider...
function combine<T: MyProtocol>(first: T, second: T) -> T {
// do some combining here
}
Now the function is generic but what that adds is that still first and second must conform to the protocol. But now they must be of the same type. And the function will return another item of the same type as first and second.
In this case you definitely benefit from using generics rather than just the protocol.
Say you
protocol Able: class {
var v:UIView? { get set }
var x:CGFloat { get set }
}
then of course, when you use Able,
if you forget "v" or "x"...
it is an error. That's good.
So do this:
class ScreenThing: UIViewController, Able {
#IBOutlet var v: UIView?
var x: CGFloat = 0.0
}
All's well. That's great.
It is enforced that you specify "v" and "x" and indeed initialize them.
But. Try this...
var _H: UInt8 = 0
protocol Able: class {
}
extension Able where Self:UIViewController {
var p:P {
get {
return objc_getAssociatedObject(self, &_H) as! P
}
set {
objc_setAssociatedObject(self, &_H, newValue, .OBJC_ASSOCIATION_RETAIN_NONATOMIC)
__setter()
}
}
}
Able now has a property p.
You can use p perfectly either in functions in Able, or, in functions in ScreenThing. That's great.
However.....
When you do this.....
class ScreenThing: UIViewController, Able {
}
you do not get an error.
You can forget to initialize "p" (it will crash).
Indeed you don't have to specify "p" as a variable (as you must with "v" and "x").
Why is it so?
This seems like a huge problem.
Is there something different I have to do, to, make the compiler enforce "p", just as it of course normally enforces variables in protocols?
Another way to look at this question:
Given exactly my code above:
is there a way to enforce the compiler to need an initializer for "p" in the consumer class?
For example.
I tried this...
class ScreenThing: UIViewController, Able {
var p:P
}
But that doesn't work.
(Strangely, that compiles - actually I don't know what the hell it's doing! It seems to be a "different" p from the p in the Extension. But in any event it doesn't enforce the need for an initializer.)
In short, again, is there something I could do or add, above, that would make the compiler enforce me initializing the pseudo-property-thing, just as of course it normally does when I put a property in the protocol such as "x" or "v".
?
maybe I have to add some ordinary property in the protocol (like "pp"), and somehow make p related to that in some way?? Just a thought.
(Footnote -- see this to understand the ": class" needed in the protocol above.)
Answering my own question:
My confusion above is that there is nothing to initialize. The var p:P in the extension (with the get and set code blocks) is simply two functions.
There's nothing to initialize.
So for example: in my extra question, I ask "how to force conforming classes initailize it on wake up?" That is meaningless. If anything, one could ask: "how to force conforming classes be sure to 'use those functions' on wake up?" - which has nothing to do with initialization.
Note too that my specific example code in the computed variable, happens to (unrelatedly) use a variable that doesn't get initialized - leading to confusion.
You don't have to implement p in the protocol's adopter, because the protocol extension has supplied an implementation. That is what a protocol extension is.
Simpler example:
protocol P {}
extension P {
func greet() {print("hello")}
}
class C : P {}
C().greet()
Note that (1) that compiles even though C does not declare greet and (2) it runs even though C does not contain an implementation of greet. That's because that's the job of the protocol extension.
Are there any ways to hide that class conforms to some protocol? Like in Objective-C - just used to add Protocol in .m file and other classes (from another files) didn't see it.
For example. I have a test cell which has a textfield. I want to hide, that this cell conforms to protocol. Something like that:
class TestCell: UITableViewCell {
}
fileprivate extension TestCell : UITextFieldDelegate {
}
But compiler swears me. Any elegant solution?
This capability has been stated by the Swift team as "unlikely" to be implemented. Here is the original thread about it: https://lists.swift.org/pipermail/swift-evolution/Week-of-Mon-20160229/011666.html
The specific statement about this particular scenario was:
Private conformances
Right now, a protocol conformance can be no less visible than the
minimum of the conforming type’s access and the protocol’s access.
Therefore, a public type conforming to a public protocol must provide
the conformance publicly. One could imagine removing that restriction,
so that one could introduce a private conformance:
public protocol P { }
public struct X { }
extension X : internal P { … } // X conforms to P, but only within this module
The main problem with private conformances is the interaction with
dynamic casting. If I have this code:
func foo(value: Any) {
if let x = value as? P { print(“P”) }
}
foo(X())
Under what circumstances should it print “P”? If foo() is defined
within the same module as the conformance of X to P? If the call is
defined within the same module as the conformance of X to P? Never?
Either of the first two answers requires significant complications in
the dynamic casting infrastructure to take into account the module in
which a particular dynamic cast occurred (the first option) or where
an existential was formed (the second option), while the third answer
breaks the link between the static and dynamic type systems—none of
which is an acceptable result.
Given:
protocol MyProtocol {
typealias T
var abc: T { get }
}
And a class that implements MyProtocol:
class XYZ: MyProtocol {
typealias T = SomeObject
var abc: T { /* Implementation */ }
}
How can I define an array of objects conforming to MyProtocol?
var list = [MyProtocol]()
Gives (together with a ton of SourceKit crashes) the following error:
Protocol 'MyProtocol' can only be used as a generic constraint because it has Self or associated type requirements
Even though the typealias is in fact defined in MyProtocol.
Is there a way to have a list of object conforming to a protocol AND having a generic constraint?
The problem is about using the generics counterpart for protocols, type aliases.
It sounds weird, but if you define a type alias, you cannot use the protocol as a type, which means you cannot declare a variable of that protocol type, a function parameter, etc. And you cannot use it as the generic object of an array.
As the error say, the only usage you can make of it is as a generic constraint (like in class Test<T:ProtocolWithAlias>).
To prove that, just remove the typealias from your protocol (note, this is just to prove, it's not a solution):
protocol MyProtocol {
var abc: Int { get }
}
and modify the rest of your sample code accordingly:
class XYZ: MyProtocol {
var abc: Int { return 32 }
}
var list = [MyProtocol]()
You'll notice that it works.
You are probably more interested in how to solve this problem. I can't think of any elegant solution, just the following 2:
remove the typealias from the protocol and replace T with AnyObject (ugly solution!!)
turn the protocol into a class (but that's not a solution that works in all cases)
but as you may argue, I don't like any of them. The only suggestion I can provide is to rethink of your design and figure out if you can use a different way (i.e. not using typealiased protocol) to achieve the same result.