Eigenvalues of symmetric band matrix using Accelerate framework - ios

In a macOS/iOS code base, I've got a real symmetric band matrix that can be anywhere from 10 × 10 to about 500 × 500, and I need to compute whether all its eigenvalues are greater than (or equal to) a certain threshold. So I only strictly need to know the lowest eigenvalue, in case that helps.
Is there any function or set of functions in Apple's Accelerate framework that can provide a full or partial solution to this? Ideally with a cost proportional to the number of non-zero entries.

Based on this, it appears there's a set of LAPACK functions that compute eigenvalues efficiently for banded symmetric matrices. (LAPACK is implemented a part of the Accelerate framework.)
As I understand it, ssbtrd followed by ssterf should do the trick.
SSBTRD reduces a real symmetric band matrix A to symmetric
tridiagonal form T by an orthogonal similarity transformation:
Q**T * A * Q = T.
SSTERF computes all eigenvalues of a symmetric tridiagonal matrix
using the Pal-Walker-Kahan variant of the QL or QR algorithm.

Related

Question about the composite body algorithm implementation in Drake

I am trying to relate algorithm 9.3 in Jain to the implementation of the composite body algorithm in Drake.
The documentation mentions that the hinge matrix is the transpose of that used in Jain. Looking in Featherstone (2008), it seemed this implementation was more in the spirit of section 6.3 of featherstone, i.e. S*=H, and the matrix is calculated as columns rather than blockwise. I wanted to double check if this was the case?
Yes, that's right. Although we use Jain's formulation and terminology (mostly) we like to think of the joint motion matrix as a small Jacobian as Featherstone does with his "S" (∂V/∂v, i.e. partial of spatial velocity V across the joint w.r.t. generalized velocities v of that joint). That way our H matrix follows the same orientation convention as does our full robotics Jacobian (where J maps velocites and Jᵀ maps forces).
We don't necessarily write down the H matrix for a given joint but rather have that joint (technically, mobilizer) provide functions for multiplying by H and Hᵀ.

Practicing Kernel trick in SVM

I am reading the theory of SVM. In kernel trick, what I understand is, if we have a data which is not linear separable in the original dimensions n, we use the kernel to map the data to a higher space to be linear separable (we have to choose the right kernel depending on the data set, etc). However, when I watched this video of Andrew ng Kernel SVM, What I understand is we can map original data into a smaller space which make me confused!? Any explanation.
Could you explain me how does RBF kernel work to map each original data sample x1(x11,x12,x13,....,x1n) to a higher space (with dimensions m) to be X1(X11,X12,X13,...,X1m) with a concrete example. Also, what I understand is the kernel compute the inner product of the transformed data (so there is an other transformation before the RBF, which means that RBF transform implicitly the data to a higher space but How?).
other thing: the kernel is a function k(x,x1):(R^n)^2->R =g(x).g(x1), with g is a transformation function, how to define g in the case of RBF kernel?
Suppose that we are in the test set, What I understand is x is the sample to be classified and x1 is the support vector (because only the support vectors will be used to calculate the hyperplane). in the case of RBF
k(x,x1)=exp(-(x-x1)^2/2sigma), so where is the transformation?
Last question: Admit that the RBF do the mapping to a higher dimension m, it is possible to show this m? I want to see the theoretical reality.
I want to implement SVM with RBF kernel. What is the m here and how to choose it? How to implement kernel trick in practice?
Could you explain me how does RBF kernel work to map each original data sample x1(x11,x12,x13,....,x1n) to a higher space (with dimensions m) to be X1(X11,X12,X13,...,X1m) with a concrete example. Also, what I understand is the kernel compute the inner product of the transformed data (so there is an other transformation before the RBF, which means that RBF transform implicitly the data to a higher space but How?).
Exactly as you said - kernel is an inner product of the projected space, not the projection itself. The whole trick is that you do not ever transform your data, because it is computationally too expensive to do so.
other thing: the kernel is a function k(x,x1):(R^n)^2->R =g(x).g(x1), with g is a transformation function, how to define g in the case of RBF kernel?
For rbf kernel, g is actually a mapping from R^n into the space of continuous functions (L2), and each point is mapped into unnormalized gaussian distribution with mean x, and variance sigma^2. Thus (up to some normalizing constant A that we will drop)
g(x) = N(x, sigma^2)[z] / A # notice this is not a number but a function of z!
and now inner product in the space of functions is the integral of products over the whole domain thus
K(x, y) = <g(x), g(y)>
= INT_{R^n} N(x, sigma^2)[z] N(y, sigma^2)[z] / A^2 dz
= B exp(-||x-y||^2 / (2*sigma^2))
where B is some constant factor (normalization) depending solely on sigma^2, thus we can drop it (as scaling does not really matter here) for computational simplicity.
Suppose that we are in the test set, What I understand is x is the sample to be classified and x1 is the support vector (because only the support vectors will be used to calculate the hyperplane). in the case of RBF k(x,x1)=exp(-(x-x1)^2/2sigma), so where is the transformation?
as said before - transformation is never explicitly used, you simply show that inner product of your hyperplane with the transformed point can be expressed again as inner products with support vectors, thus you do not ever transform anything, just use kernels
<w, g(x)> = < SUM_{i=1}^N alpha_i y_i g(sv_i), g(x)>
= SUM_{i=1}^N alpha_i y_i <g(sv_i), g(x)>
= SUM_{i=1}^N alpha_i y_i K(sv_i, x)
where sv_i is i'th support vector, alpha_i is the per-sample weight (Lagrange multiplier) found during the optimization process and y_i is label of i'th support vector.
Last question: Admit that the RBF do the mapping to a higher dimension m, it is possible to show this m? I want to see the theoretical reality.
In this case m is infinity, as your new space is space of continuous functions in the domain of R^n -> R, thus a single vector (function) is defined as a continuum (size of the set of real numbers) values - one per each possible input value coming from R^n (it is a simple set theory result that R^n for any positive n is of size continuum). Thus in terms of pure mathematics, m = |R|, and using set theory this is so called Beth_1 (https://en.wikipedia.org/wiki/Beth_number).
I want to implement SVM with RBF kernel. What is the m here and how to choose it? How to implement kernel trick in practice?
You do not choose m, it is defined by the kernel itself. Implementing kernel trick in practise requires expressing all your optimization routines in the form, where training points are used solely in the context of inner products, and just replacing them with kernel calls. This is way too complex to describe in SO form.

Discrete Wavelet Transform (Daubechies wavelet) of an array complex numbers

Say, I have a signal represented as an array of real numbers y = [1,2,0,4,5,6,7,90,5,6]. I can use Daubechies-4 coefficients D4 = [0.482962, 0.836516, 0.224143, -0.129409], and apply a wavelet transform to receive high- and low-frequencies of the signal. So, the high frequency component will be calculated like this:
high[v] = y[2*v]*D4[0] + y[2*v+1]*D4[1] + y[2*v+2]*D4[2] + y[2*v+3]*D4[3],
and the low frequency component can be calculated using other D4 coefs permutation.
The question is: what if y is complex array? Do I just multiply and add complex numbers to receive subbands, or is it correct to get amplitude and phase, treat each of them like a real number, do the wavelet transform for them, and then restore complex number array for each subband using formulas real_part = abs * cos(phase) and imaginary_part = abs * sin(phase)?
To handle the case of complex data, you're looking at the Complex Wavelet Transform. It's actually a simple extension to the DWT. The most common way to handle complex data is to treat the real and imaginary components as two separate signals and perform a DWT on each component separately. You will then receive the decomposition of the real and imaginary components.
This is commonly known as the Dual-Tree Complex Wavelet Transform. This can best be described by the figure below that I pulled from Wikipedia:
Source: Wikipedia
It's called "dual-tree" because you have two DWT decompositions happening in parallel - one for the real component and one for the imaginary. In the above diagram, g0/h0 represent the low-pass and high-pass components of the real part of the signal x and g1/h1 represent the low-pass and high-pass components of the imaginary part of the signal x.
Once you decompose the real and imaginary parts into their respective DWT decompositions, you can combine them to get the magnitude and/or phase and proceed to the next step or whatever you desire to do with them.
The mathematical proof regarding the correctness of this is outside the scope of what we're talking about, but if you would like to see how this got derived, I refer you to the canonical paper by Kingsbury in 1997 in the work Image Processing with Complex Wavelets - http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=835E60EAF8B1BE4DB34C77FEE9BBBD56?doi=10.1.1.55.3189&rep=rep1&type=pdf. Pay close attention to the noise filtering of images using the CWT - this is probably what you're looking for.

Convolution Vs Correlation

Can anyone explain me the similarities and differences, of the Correlation and Convolution ? Please explain the intuition behind that, not the mathematical equation(i.e, flipping the kernel/impulse).. Application examples in the image processing domain for each category would be appreciated too
You will likely get a much better answer on dsp stack exchange but... for starters I have found a number of similar terms and they can be tricky to pin down definitions.
Correlation
Cross correlation
Convolution
Correlation coefficient
Sliding dot product
Pearson correlation
1, 2, 3, and 5 are very similar
4,6 are similar
Note that all of these terms have dot products rearing their heads
You asked about Correlation and Convolution - these are conceptually the same except that the output is flipped in convolution. I suspect that you may have been asking about the difference between correlation coefficient (such as Pearson) and convolution/correlation.
Prerequisites
I am assuming that you know how to compute the dot-product. Given two equal sized vectors v and w each with three elements, the algebraic dot product is v[0]*w[0]+v[1]*w[1]+v[2]*w[2]
There is a lot of theory behind the dot product in terms of what it represents etc....
Notice the dot product is a single number (scalar) representing the mapping between these two vectors/points v,w In geometry frequently one computes the cosine of the angle between two vectors which uses the dot product. The cosine of the angle between two vectors is between -1 and 1 and can be thought of as a measure of similarity.
Correlation coefficient (Pearson)
Correlation coefficient between equal length v,w is simply the dot product of two zero mean signals (subtract mean v from v to get zmv and mean w from w to get zmw - here zm is shorthand for zero mean) divided by the magnitudes of zmv and zmw.
to produce a number between -1 and 1. Close to zero means little correlation, close to +/- 1 is high correlation. it measures the similarity between these two vectors.
See http://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient for a better definition.
Convolution and Correlation
When we want to correlate/convolve v1 and v2 we basically are computing a series of dot-products and putting them into an output vector. Let's say that v1 is three elements and v2 is 10 elements. The dot products we compute are as follows:
output[0] = v1[0]*v2[0]+v1[1]*v2[1]+v1[2]*v2[2]
output[1] = v1[0]*v2[1]+v1[1]*v2[2]+v1[2]*v2[3]
output[2] = v1[0]*v2[2]+v1[1]*v2[3]+v1[2]*v2[4]
output[3] = v1[0]*v2[3]+v1[1]*v2[4]+v1[2]*v2[5]
output[4] = v1[0]*v2[4]+v1[1]*v2[5]+v1[2]*v2[6]
output[5] = v1[0]*v2[7]+v1[1]*v2[8]+v1[2]*v2[9]
output[6] = v1[0]*v2[8]+v1[1]*v2[9]+v1[2]*v2[10] #note this is
#mathematically valid but might give you a run time error in a computer implementation
The output can be flipped if a true convolution is needed.
output[5] = v1[0]*v2[0]+v1[1]*v2[1]+v1[2]*v2[2]
output[4] = v1[0]*v2[1]+v1[1]*v2[2]+v1[2]*v2[3]
output[3] = v1[0]*v2[2]+v1[1]*v2[3]+v1[2]*v2[4]
output[2] = v1[0]*v2[3]+v1[1]*v2[4]+v1[2]*v2[5]
output[1] = v1[0]*v2[4]+v1[1]*v2[5]+v1[2]*v2[6]
output[0] = v1[0]*v2[7]+v1[1]*v2[8]+v1[2]*v2[9]
Notice that we have less than 10 elements in the output as for simplicity I am computing the convolution only where both v1 and v2 are defined
Notice also that the convolution is simply a number of dot products. There has been considerable work over the years to be able to speed up convolutions. The sweeping dot products are slow and can be sped up by first transforming the vectors into the fourier basis space and then computing a single vector multiplication then inverting the result, though I won't go into that here...
You might want to look at these resources as well as googling: Calculating Pearson correlation and significance in Python
The best answer I got were from this document:http://www.cs.umd.edu/~djacobs/CMSC426/Convolution.pdf
I'm just going to copy the excerpt from the doc:
"The key difference between the two is that convolution is associative. That is, if F and G are filters, then F*(GI) = (FG)*I. If you don’t believe this, try a simple example, using F=G=(-1 0 1), for example. It is very convenient to have convolution be associative. Suppose, for example, we want to smooth an image and then take its derivative. We could do this by convolving the image with a Gaussian filter, and then convolving it with a derivative filter. But we could alternatively convolve the derivative filter with the Gaussian to produce a filter called a Difference of Gaussian (DOG), and then convolve this with our image. The nice thing about this is that the DOG filter can be precomputed, and we only have to convolve one filter with our image.
In general, people use convolution for image processing operations such as smoothing, and they use correlation to match a template to an image. Then, we don’t mind that correlation isn’t associative, because it doesn’t really make sense to combine two templates into one with correlation, whereas we might often want to combine two filter together for convolution."
Convolution is just like correlation, except that we flip over the filter before correlating

OpenCV + HOG +SVM: help needed with SVM single feature vector

I try to implement a people detecting system based on SVM and HOG using OpenCV2.3. But I got stucked.
I came this far:
I can compute HOG values from an image database and then I calculate with LIBSVM the SVM vectors, so I get e.g. 1419 SVM vectors with 3780 values each.
OpenCV just wants one feature vector in the method hog.setSVMDetector(). Therefore I have to calculate one feature vector from my 1419 SVM vectors, that LIBSVM has calculated.
I found one hint, how to calculate this single feature vector: link
“The detecting feature vector at component i (where i is in the range e.g. 0-3779) is built out of the sum of the support vectors at i * the alpha value of that support vector, e.g.
det[i] = sum_j (sv_j[i] * alpha[j]) , where j is the number of the support vector, i
is the number of the components of the support vector.”
According to this, my routine works this way:
I take the first element of my first SVM vector, multiply it with the alpha value and add it with the first element of the second SVM vector that has been multiplied with alpha value, …
But after summing up all 1419 elements I get quite high values:
16.0657, -0.351117, 2.73681, 17.5677, -8.10134,
11.0206, -13.4837, -2.84614, 16.796, 15.0564,
8.19778, -0.7101, 5.25691, -9.53694, 23.9357,
If you compare them, to the default vector in the OpenCV sample peopledetect.cpp (and hog.cpp in the OpenCV source)
0.05359386f, -0.14721455f, -0.05532170f, 0.05077307f,
0.11547081f, -0.04268804f, 0.04635834f, -0.05468199f, 0.08232084f,
0.10424068f, -0.02294518f, 0.01108519f, 0.01378693f, 0.11193510f,
0.01268418f, 0.08528346f, -0.06309239f, 0.13054633f, 0.08100729f,
-0.05209739f, -0.04315529f, 0.09341384f, 0.11035026f, -0.07596218f,
-0.05517511f, -0.04465296f, 0.02947334f, 0.04555536f,
you see, that the default vector values are in the boundaries between –1 and +1, but my values exceed them far.
I think, my single feature vector routine needs some adjustment, any ideas?
Regards,
Christoph
The aggregated vector's values do look high.
I used the loadSVMfromModelFile() located in http://lnx.mangaitalia.net/trainer/main.cpp
I had to remove svinstr.sync(); from the code since it caused losing parts of the lines and getting wrong results.
I don't know much about the rest of the file, I only used this function.

Resources