Given any number of the sort 78.689 or 1.12 for instance, what I'm looking for is to programmatically round the number to the nearest tenth place after the decimal.
I'm trying to do this in an environment where there is a math.floor() function that rounds to the lowest whole number, and as far as I can tell from documentation there's nothing like PHP's round() function.
There's simple snippet at: http://lua-users.org/wiki/SimpleRound
function round(num, numDecimalPlaces)
local mult = 10^(numDecimalPlaces or 0)
return math.floor(num * mult + 0.5) / mult
end
It will misbehave when numDecimalPlaces is negative, but there's more examples on that page.
You can use coercion to do this...
It work just like printf... You can try to do something like in this snippet.
value = 8.9756354
print(string.format("%2.1f", value))
-- output: 9.0
Considering that this is roblox, it would just be easier to make this a global variable instead of making a single module or creating your own gloo.
_G.round = function(x, factor)
local factor = (factor) and (10 ^ factor) or 0
return math.floor((x + 0.5) * factor) / factor
end
In my case, I was simply trying to make a string representation of this number... however, I imagine this solution could prove useful to others as well.
string.sub(tostring(percent * 100), 1, 4)
so to bring it back to a numerical representation, you could simply call tonumber() on the resulting number.
Which is the best efficient way to round up a number and then truncate it (remove decimal places after rounding up)?
for example if decimal is above 0.5 (that is, 0.6, 0.7, and so on), I want to round up and then truncate (case 1). Otherwise, I would like to truncate (case 2)
for example:
232.98266601563 => after rounding and truncate = 233 (case 1)
232.49445450000 => after rounding and truncate = 232 (case 2)
232.50000000000 => after rounding and truncate = 232 (case 2)
There is no build-in math.round() function in Lua, but you can do the following:
print(math.floor(a+0.5)).
A trick that is useful for rounding at decimal digits other than whole integers is to pass the value through formatted ASCII text, and use the %f format string to specify the rounding desired. For example
mils = tonumber(string.format("%.3f", exact))
will round the arbitrary value in exact to a multiple of 0.001.
A similar result can be had with scaling before and after using one of math.floor() or math.ceil(), but getting the details right according to your expectations surrounding the treatment of edge cases can be tricky. Not that this isn't an issue with string.format(), but a lot of work has gone into making it produce "expected" results.
Rounding to a multiple of something other than a power of ten will still require scaling, and still has all the tricky edge cases. One approach that is simple to express and has stable behavior is to write
function round(exact, quantum)
local quant,frac = math.modf(exact/quantum)
return quantum * (quant + (frac > 0.5 and 1 or 0))
end
and tweak the exact condition on frac (and possibly the sign of exact) to get the edge cases you wanted.
To also support negative numbers, use this:
function round(x)
return x>=0 and math.floor(x+0.5) or math.ceil(x-0.5)
end
If your Lua uses double precision IEC-559 (aka IEEE-754) floats, as most do, and your numbers are relatively small (the method is guaranteed to work for inputs between -251 and 251), the following efficient code will perform rounding using your FPU's current rounding mode, which is usually round to nearest, ties to even:
local function round(num)
return num + (2^52 + 2^51) - (2^52 + 2^51)
end
(Note that the numbers in parentheses are calculated at compilation time; they don't affect runtime).
For example, when the FPU is set to round to nearest or even, this unit test prints "All tests passed":
local function testnum(num, expected)
if round(num) ~= expected then
error(("Failure rounding %.17g, expected %.17g, actual %.17g")
:format(num+0, expected+0, round(num)+0))
end
end
local function test(num, expected)
testnum(num, expected)
testnum(-num, -expected)
end
test(0, 0)
test(0.2, 0)
test(0.4, 0)
-- Most rounding algorithms you find on the net, including Ola M's answer,
-- fail this one:
test(0.49999999999999994, 0)
-- Ties are rounded to the nearest even number, rather than always up:
test(0.5, 0)
test(0.5000000000000001, 1)
test(1.4999999999999998, 1)
test(1.5, 2)
test(2.5, 2)
test(3.5, 4)
test(2^51-0.5, 2^51)
test(2^51-0.75, 2^51-1)
test(2^51-1.25, 2^51-1)
test(2^51-1.5, 2^51-2)
print("All tests passed")
Here's another (less efficient, of course) algorithm that performs the same FPU rounding but works for all numbers:
local function round(num)
local ofs = 2^52
if math.abs(num) > ofs then
return num
end
return num < 0 and num - ofs + ofs or num + ofs - ofs
end
Here's one to round to an arbitrary number of digits (0 if not defined):
function round(x, n)
n = math.pow(10, n or 0)
x = x * n
if x >= 0 then x = math.floor(x + 0.5) else x = math.ceil(x - 0.5) end
return x / n
end
For bad rounding (cutting the end off):
function round(number)
return number - (number % 1)
end
Well, if you want, you can expand this for good rounding.
function round(number)
if (number - (number % 0.1)) - (number - (number % 1)) < 0.5 then
number = number - (number % 1)
else
number = (number - (number % 1)) + 1
end
return number
end
print(round(3.1))
print(round(math.pi))
print(round(42))
print(round(4.5))
print(round(4.6))
Expected results:
3, 3, 42, 5, 5
I like the response above by RBerteig: mils = tonumber(string.format("%.3f", exact)).
Expanded it to a function call and added a precision value.
function round(number, precision)
local fmtStr = string.format('%%0.%sf',precision)
number = string.format(fmtStr,number)
return number
end
Should be math.ceil(a-0.5) to correctly handle half-integer numbers
Here is a flexible function to round to different number of places. I tested it with negative numbers, big numbers, small numbers, and all manner of edge cases, and it is useful and reliable:
function Round(num, dp)
--[[
round a number to so-many decimal of places, which can be negative,
e.g. -1 places rounds to 10's,
examples
173.2562 rounded to 0 dps is 173.0
173.2562 rounded to 2 dps is 173.26
173.2562 rounded to -1 dps is 170.0
]]--
local mult = 10^(dp or 0)
return math.floor(num * mult + 0.5)/mult
end
For rounding to a given amount of decimals (which can also be negative), I'd suggest the following solution that is combined from the findings already presented as answers, especially the inspiring one given by Pedro Gimeno. I tested a few corner cases I'm interested in but cannot claim that this makes this function 100% reliable:
function round(number, decimals)
local scale = 10^decimals
local c = 2^52 + 2^51
return ((number * scale + c ) - c) / scale
end
These cases illustrate the round-halfway-to-even property (which should be the default on most machines):
assert(round(0.5, 0) == 0)
assert(round(-0.5, 0) == 0)
assert(round(1.5, 0) == 2)
assert(round(-1.5, 0) == -2)
assert(round(0.05, 1) == 0)
assert(round(-0.05, 1) == 0)
assert(round(0.15, 1) == 0.2)
assert(round(-0.15, 1) == -0.2)
I'm aware that my answer doesn't handle the third case of the actual question, but in favor of being IEEE-754 compliant, my approach makes sense. So I'd expect that the results depend on the current rounding mode set in the FPU with FE_TONEAREST being the default. And that's why it seems high likely that after setting FE_TOWARDZERO (however you can do that in Lua) this solution would return exactly the results that were asked for in the question.
Try using math.ceil(number + 0.5) This is according to this Wikipedia page. If I'm correct, this is only rounding positive integers. you need to do math.floor(number - 0.5) for negatives.
If it's useful to anyone, i've hash-ed out a generic version of LUA's logic, but this time for truncate() :
**emphasized text pre-apologize for not knowing lua-syntax, so this is in AWK/lua mixture, but hopefully it should be intuitive enough
-- due to lua-magic alrdy in 2^(52-to-53) zone,
-- has to use a more coarse-grained delta than
-- true IEEE754 double machineepsilon of 2^-52
function trunc_lua(x,s) {
return \
((x*(s=(-1)^(x<-x)) \
- 2^-1 + 2^-50 \ -- can also be written as
\ -- 2^-50-5^0/2
- _LUAMAGIC \ -- if u like symmetric
\ -- code for fun
+ _LUAMAGIC \
) *(s) };
It's essentially the same concept as rounding, but force-processing all inputs in positive-value zone, with a -1*(0.5-delta) offset. The smallest delta i could attain is 2^-52 ~ 2.222e-16.
The lua-magic values must come after all those pre-processing steps, else precision-loss may occur. And finally, restore original sign of input.
The 2 "multiplies" are simply low-overhead sign-flipping. sign-flips 4 times for originally negative values (2 manual flips and round-trip to end of mantissa), while any x >= 0, including that of -0.0, only flips twice. All tertiary function calling, float division, and integer modulus is avoided, with only 1 conditional check for x<0.
usage notes :
(1) doesn't perform checks on input for invalid or malicious payload,
(2) doesn't use quickly check for zero,
(3) doesn't check for extreme inputs that may render this logic moot, and
(4) doesn't attempt to pretty format the value
if not exist math.round
function math.round(x, n)
return tonumber(string.format("%." .. n .. "f", x))
end
As you know, float point has a precision problem, that is a value 1 will be 0.9999999. And lua use == in C to check whether two double numbers equal. So the problem is:
a = 5.6
b = 14 * 0.4
print(a==b) ; => false
But the worse thing is:
a = 1
...
if a < 1 then print("<1") end ; => sometimes a < 1
So how can i avoid this ? I check out lua source code, it seems i can modify luai_numeq/luai_numle) macros in luaconf.h, but is this necessary ?
update
The second example is not really correct. Actually my problem is, I pass a value 1 to c/c++ which use lua_tonumber to get the value, and i store this value in a double variable, and after sometime, I push the value (lua_pushnumber) to lua, and a < 1 happened:
in lua:
my_cfunction(1)
...
in c:
int my_cfunction(lua_State *L) {
double val = lua_tonumber(L, 1);
...
...
lua_pushnumber(L, val);
in lua:
local a = my_cfunction2()
if a < 1 then ... end
As you know, float point has a precision problem, that is a value 1 will be 0.9999999
I don't know that at all. Because it's not true. 1.0 is 1.0. This:
a = 1
if a < 1 then print("<1") end
Will never print "<1". Not unless you actually change a. Even this:
a = 2
a = a - 1
if a < 1 then print("<1") end
Will likewise never hit the print statement.
As long as you are performing integer arithmetic on Lua's numbers, you will end up with integers. No addition, subtraction, or multiplication of integer values will leave you with a non-integer number value.
float point has a precision problem
It doesn't.
A 64 bit double can hold many more integer values precisely than a 32 bit integer.
NSLog(#"CEIL %f",ceil(2/3));
should return 1. However, it shows:
CEIL 0.000000
Why and how to fix that problem? I use ceil([myNSArray count]/3) and it returns 0 when array count is 2.
The same rules as C apply: 2 and 3 are ints, so 2/3 is an integer divide. Integer division truncates so 2/3 produces the integer 0. That integer 0 will then be cast to a double precision float for the call to ceil, but ceil(0) is 0.
Changing the code to:
NSLog(#"CEIL %f",ceil(2.0/3.0));
Will display the result you're expecting. Adding the decimal point causes the constants to be recognised as double precision floating point numbers (and 2.0f is how you'd type a single precision floating point number).
Maudicus' solution works because (float)2/3 casts the integer 2 to a float and C's promotion rules mean that it'll promote the denominator to floating point in order to divide a floating point number by an integer, giving a floating point result.
So, your current statement ceil([myNSArray count]/3) should be changed to either:
([myNSArray count] + 2)/3 // no floating point involved
Or:
ceil((float)[myNSArray count]/3) // arguably more explicit
2/3 evaluates to 0 unless you cast it to a float.
So, you have to be careful with your values being turned to int's before you want.
float decValue = (float) 2/3;
NSLog(#"CEIL %f",ceil(decValue));
==>
CEIL 1.000000
For you array example
float decValue = (float) [myNSArray count]/3;
NSLog(#"CEIL %f",ceil(decValue));
It probably evaluates 2 and 3 as integers (as they are, obviously), evaluates the result (which is 0), and then converts it to float or double (which is also 0.00000). The easiest way to fix it is to type either 2.0f/3, 2/3.0f, or 2.0f/3.0f, (or without "f" if you wish, whatever you like more ;) ).
Hope it helps
I need to do this..
<coordinates_east>6'01.4</coordinates_east>
<coordinates_north>45'05.5</coordinates_north>
I need to convert to this google friendly format in Ruby!...please note that these are not the real converted numbers just an example of the format I think I need!
<coordinates_east>45.46998</coordinates_east>
<coordinates_north>6.90764</coordinates_north>
How?
your input coordinates seem to be in wrong notation. it should probably be
<coordinates_north>45°05.5'</coordinates_north>
<coordinates_east>6°01.4'</coordinates_east>
(degrees° arcminutes'), or
<coordinates_north>45°05'5"</coordinates_north>
<coordinates_east>6°01'4"</coordinates_east>
(degrees° arcminutes' arcseconds")
once you figured out the correct input notation, you can use Parsing latitude and longitude with Ruby for converting them to decimal degrees. if your input notation is degrees° arcminutes', you have to modify it slightly. also pay attention to negative coordinates.
if you only want to use it with google maps, you don't actually need to convert it, because google maps understands arcminutes/-seconds notation.
my coordinates were space separated ("deg min sec") and I wrote this little lambda to handle them:
#to_decimal = lambda do |str|
deg, min, sec = str.split(" ").map(&:to_f)
if deg >= 0
output = deg + (min / 60.0) + (sec / 3600.0)
elsif deg < #HARD EARNED KNOWLEDGE HERE
output = deg - (min / 60.0) - (sec / 3600.0)
end
raise "something is wrong" if output.abs > 180
output
end