ANTLR list separated by whitespace - parsing

I'm a new ANTLR user and I'm trying to parse a text, where numbers are separated by whitespace:
1 2 3
My grammar consists of these rules:
program : expr+ ;
expr : vector ;
vector : INTEGER+ ;
INTEGER : [0-9]+ ;
WS : [ \t] -> skip ;
With this, text is parsed correctly but reporting ambiguity. How can I resolve the ambiguity for this rule?

Related

Does antlr automatically discard whitespace?

I've written the following arithmetic grammar:
grammar Calc;
program
: expressions
;
expressions
: expression (NEWLINE expression)*
;
expression
: '(' expression ')' // parenExpression has highest precedence
| expression MULDIV expression // then multDivExpression
| expression ADDSUB expression // then addSubExpression
| OPERAND // finally the operand itself
;
MULDIV
: [*/]
;
ADDSUB
: [-+]
;
// 12 or .12 or 2. or 2.38
OPERAND
: [0-9]+ ('.' [0-9]*)?
| '.' [0-9]+
;
NEWLINE
: '\n'
;
And I've noticed that regardless of how I space the tokens I get the same result, for example:
1+2
2+3
Or:
1 +2
2+3
Still give me the same thing. Also I've noticed that adding in the following rule does nothing for me:
WS
: [ \r\n\t] + -> skip
Which makes me wonder whether skipping whitespace is the default behavior of antlr4?
ANTLR4 based parsers have the ability to skip over single unwanted or missing tokens and continue parsing if possible (which is the case here). And there's no default to ignore whitespaces. You have to always specify a whitespace rule which either skips them or puts them on a hidden channel.

Antlr grun error - no viable alternative input at

I'm trying to write a grammar for Prolog interpreter. When I run grun from command line on input like "father(john,mary).", I get a message saying "no viable input at 'father(john,'" and I don't know why. I've tried rearranging rules in my grammar, used different entry points etc., but still get the same error. I'm not even sure if it's caused by my grammar or something else like antlr itself. Can someone point out what is wrong with my grammar or think of what could be the cause if not the grammar?
The commands I ran are:
antlr4 -no-listener -visitor Expr.g4
javac *.java
grun antlr.Expr start tests/test.txt -gui
And this is the resulting parse tree:
Here is my grammar:
grammar Expr;
#header{
package antlr;
}
//start rule
start : (program | query) EOF
;
program : (rule_ '.')*
;
query : conjunction '?'
;
rule_ : compound
| compound ':-' conjunction
;
conjunction : compound
| compound ',' conjunction
;
compound : Atom '(' elements ')'
| '.(' elements ')'
;
list : '[]'
| '[' element ']'
| '[' elements ']'
;
element : Term
| list
| compound
;
elements : element
| element ',' elements
;
WS : [ \t\r\n]+ -> skip ;
Atom : [a-z]([a-z]|[A-Z]|[0-9]|'_')*
| '0'
;
Var : [A-Z]([a-z]|[A-Z]|[0-9]|'_')*
;
Term : Atom
| Var
;
The lexer will always produce the same tokens for any input. The lexer does not "listen" to what the parser is trying to match. The rules the lexer applies are quite simple:
try to match as many characters as possible
when 2 or more lexer rules match the same amount of characters, let the rule defined first "win"
Because of the 2nd rule, the rule Term will never be matched. And moving the Term rule above Var and Atom will cause the latter rules to be never matched. The solution: "promote" the Term rule to a parser rule:
start : (program | query) EOF
;
program : (rule_ '.')*
;
query : conjunction '?'
;
rule_ : compound (':-' conjunction)?
;
conjunction : compound (',' conjunction)?
;
compound : Atom '(' elements ')'
| '.' '(' elements ')'
;
list : '[' elements? ']'
;
element : term
| list
| compound
;
elements : element (',' element)*
;
term : Atom
| Var
;
WS : [ \t\r\n]+ -> skip ;
Atom : [a-z] [a-zA-Z0-9_]*
| '0'
;
Var : [A-Z] [a-zA-Z0-9_]*
;

ANTLR grammar not working as expected. What am I doing wrong?

I have this grammar below for implementing an IN operator taking a list of numbers or strings.
grammar listFilterExpr;
listFilterExpr: entityIdNumberListFilter | entityIdStringListFilter;
entityIdNumberProperty
: 'a.Id'
| 'c.Id'
| 'e.Id'
;
entityIdStringProperty
: 'f.phone'
;
listFilterExpr
: entityIdNumberListFilter
| entityIdStringListFilter
;
listOperator
: '$in:'
;
entityIdNumberListFilter
: entityIdNumberProperty listOperator numberList
;
entityIdStringListFilter
: entityIdStringProperty listOperator stringList
;
numberList: '[' ID (',' ID)* ']';
fragment ID: [1-9][0-9]*;
stringList: '[' STRING (',' STRING)* ']';
STRING
: '"'(ESC | SAFECODEPOINT)*'"'
;
fragment ESC
: '\\' (["\\/bfnrt] | UNICODE)
;
fragment SAFECODEPOINT
: ~ ["\\\u0000-\u001F]
;
If I try to parse the following input:
c.Id $in: [1,1]
Then I get the following error in the parser:
mismatched input '1' expecting ID
Please help me to correct this grammar.
Update
I found this following rule way above in the huge grammar file of my project that might be matching '1' before it gets to match to ID:
NUMBER
: '-'? INT ('.' [0-9] +)?
;
fragment INT
: '0' | [1-9] [0-9]*
;
But, If I write my ID rule before NUMBER then other things fail, because they have already matched ID which should have matched NUMBER
What should I do?
As mentioned by rici: ID should not be a fragment. Fragments can only be used by other lexer rules, they will never become a token on their own (and can therefor not be used in parser rules).
Just remove the fragment keyword from it: ID: [1-9][0-9]*;
Note that you'll also have to account for spaces. You probably want to skip them:
SPACES : [ \t\r\n] -> skip;
...
mismatched input '1' expecting ID
...
This looks like there's another lexer, besides ID, that also matches the input 1 and is defined before ID. In that case, have a look at this Q&A: ANTLR 4.5 - Mismatched Input 'x' expecting 'x'
EDIT
Because you have the rules ordered like this:
NUMBER
: '-'? INT ('.' [0-9] +)?
;
fragment INT
: '0' | [1-9] [0-9]*
;
ID
: [1-9][0-9]*
;
the lexer will never create an ID token (only NUMBER tokens will be created). This is just how ANTLR works: in case of 2 or more lexer rules match the same amount of characters, the one defined first "wins".
In the first place I think it's odd to have an ID rule that matches only digits, but, if that's the language you're parsing, OK. In your case, you could do something like this:
id : POS_NUMBER;
number : POS_NUMBER | NEG_NUMBER;
POS_NUMBER : INT ('.' [0-9] +)?;
NEG_NUMBER : '-' POS_NUMBER;
fragment INT
: '0' | [1-9] [0-9]*
;
and then instead of ID, use id in your parser rules. As well as using number instead of the NUMBER you're using now.

Ignoring whitespace (in certain parts) in Antlr4

I am not so familiar with antlr. I am using version 4 and I have a grammar where whitespace is not important in some parts (but it might be in others, or rather its luck).
So say we have the following grammar
grammar Foo;
program : A* ;
A : ID '#' ID '(' IDList ')' ';' ;
ID : [a-zA-Z]+ ;
IDList : ID (',' IDList)* ;
WS : [ \t\r\n]+ -> skip ;
and a test input
foo#bar(X,Y);
foo#baz ( z,Z) ;
The first line is parsed correctly whereas the second one is not.
I don't want to polute my rules with the places where whitespace is not relevant, since my actual grammar is more complicated than the toy example. In case it's not clear the part ID'#'ID should not have a whitespace. Whitespace in any other position shouldn't matter at all.
Even though you are skipping WS, lexer rules are still sensitive to the existence of the whitespace characters. Skip simply means that no token is generated for consumption by the parser. Thus, the lexer Addr rule explicitly does not permit any interior whitespace characters.
Conversely, the a and idList parser rules never see interior whitespace tokens so those rules are insensitive to the occurrence of whitespace characters occurring between the generated tokens.
grammar Foo;
program : a* EOF ; // EOF will require parsing the entire input
a : Addr LParen IDList RParen Semi ;
idList : ID (Comma ID)* ; // simpler equivalent construct
Addr : ID '#' ID ;
ID : [a-zA-Z]+ ;
WS : [ \t\r\n]+ -> skip ;
Define ID '#' ID as lexer token rather than as parser token.
A : AID '(' IDList ')' ';' ;
AID : [a-zA-Z]+ '#' [a-zA-Z]+;
Other options
enable/disable whitespaces in your token stream, e.g. here
enable/disable whitespaces with lexer modes (may be a problem because lexer modes are triggered on context, which is not easy to determine in your case)

ANTLR4: Two channels, one for CSV-formatted data, one for key/value-formatted data -- does not work

The lexer grammar below contains two sets of rules: (1) rules for tokenizing CSV-formatted input, and (2) rules for tokenizing key/value-formatted input. For (1) I put the tokens on channel(0). For (2) I put the tokens on channel(1). Do you see any problems with my lexer grammar?
Also below is a parser grammar and it also contains two sets of rules: (1) rules for structuring CSV tokens into a parse tree, and (2) rules for for structuring key/value tokens into a parse tree. Do you see any problems with my parser grammar?
When I apply ANTLR to the grammar files, compile, and then run the test rig (with the -gui flag) using this CSV input:
FirstName, LastName, Street, City, State, ZipCode
Mark,, 4460 Stuart Street, Marion Center, PA, 15759
the parse tree is completely wrong - the tree contains no data. I have no idea why the parse tree is wrong. Any suggestions? I have tested each part separately (removed the key/value rules from the lexer and parser grammars and ran it with CSV input, removed the CSV rules from the lexer and parser grammars and ran it with key/value input) and it works fine.
Lexer Grammar
lexer grammar MyLexer;
COMMA : ',' -> channel(0) ;
NL : ('\r')?'\n' -> channel(0) ;
WS : [ \t\r\n]+ -> skip, channel(0) ;
STRING : (~[,\r\n])+ -> channel(0) ;
KEY : ('FirstName' | 'LastName') -> channel(1) ;
EQ : '=' -> channel(1) ;
NL2 : ('\r')?'\n' -> channel(1) ;
WS2 : [ \t\r\n]+ -> skip, channel(1) ;
VALUE : (~[=\r\n])+ -> channel(1) ;
Parser Grammar
parser grammar MyParser;
options { tokenVocab=MyLexer; }
csv : (header rows)+ EOF ;
header : field (COMMA field)* NL ;
rows : (row)* ;
row : field (COMMA field)* NL ;
field : STRING | ;
keyValue : pairs EOF ;
pairs : (pair)+ ;
pair : key EQ value NL2;
key : KEY ;
value : VALUE ;
The longest token match wins and if two matches are equal-sized the first one matches. That means:
STRING subsumes KEY, EQ and VALUE, you will never get Tokens of the latter types.
The ANTLR parser needs random Access on the token stream, thus not allowing context sensitive lexing.
I suggest to put both lexer grammars into separate grammars. Maybe it gets tricky to use them with a common parser grammar. If so - split the parser grammar as well.

Resources