Dart: Simultaneous http requests - dart

Problem: Http.get requests in future functions are called one after the other.
//this should open 5 simultaneous http connections
for (var i= 0; i < 5; i++) {
getImage('[image soure]', i);
}
I've divided the method's code into several parts to better convey the problem.
import 'package:http/http.dart' as http;
void getImage(final String img, final int i) async {
var blurHash = '';
try {
//PART: LOADING
print('loading $img...');
//PART: A
var client = http.Client();
var res = await client.get(img);
print('$i: a');
//PART: B
var bbytes = res.bodyBytes;
print('$i: b');
//PART: C
var l = bbytes.toList();
print('$i: c');
...
blurHash = '...';
} catch (e) {
print(e);
}
}
What the console output should look like:
loading img.png
loading img.png
loading img.png
loading img.png
loading img.png
0: a
1: a
2: a
3: a
4: a
0: b
1: b
2: b
3: b
4: b
0: c
1: c
2: c
3: c
4: c
What the console output really look like:
loading img.png
loading img.png
loading img.png
loading img.png
loading img.png
0: a
0: b
0: c
1: a
1: b
1: c
2: a
2: b
2: c
3: a
3: b
3: c
4: a
4: b
4: c
This means that the loading part is executed simultaneously but it seems like the http.get requests in Part A are executed behind each other.

await someFuture (which as Christopher Moore explained in comments) is syntactic sugar for return someFuture.then(...). Execution from your function cannot yield unless it returns/awaits.
You can explicitly allow your functions to yield by sprinkling in some await null lines; that should allow your getImage calls to be interleaved in the way that you desire. Note that doing so will not make things any faster; each Dart isolate executes Dart code in a single thread, so if you're not awaiting an asynchronous operation whose underlying implementation involves another isolate or thread, you won't be saving any time overall. Adding extra awaits instead would introduce more context switching and make everything take a bit longer. (That still could be useful if your code needs to respond to other events while doing expensive operations, though.)

Related

Can someone explain to me how this code works? Closure in Dart

I can't understand how the closure works in Dart. Why does BMW stay? This explanation causes my neurons to overheat. A lexical closure is a functional object that has access to variables from its lexical domain. Even if it is used outside of its original scope.
`void main() {
var car = makeCar('BMW');
print(makeCar);
print(car);
print(makeCar('Tesla'));
print(car('Audi'));
print(car('Nissan'));
print(car('Toyota'));
}
String Function(String) makeCar(String make) {
var ingane = '4.4';
return (model) => '$model,$ingane,$make';
}`
Console
Closure 'makeCar'
Closure 'makeCar_closure'
Closure 'makeCar_closure'
Audi,4.4,BMW
Nissan,4.4,BMW
Toyota,4.4,BMW
Calling car('Audi') is equal to calling (makeCar('BMW'))('Audi');
A lexical closure is a functional object that has access to variables from its lexical domain. Even if it is used outside of its original scope.
in simple english:
String make will stay valid as long as the returned function is not out of scope because the returned function has reference to String make.
In essence, you "inject" information needed for the newly created function. Your car knows that make is "BMW"
I think I figured it out. Here is an example where I left comments. Maybe it will help someone.
void main() {
var pr = funkOut(10); // assign a reference to an object instance
// of the Function class to the pr variable. pr is a closure because
// it is assigned a reference to an instance that contains a lexical
// environment (int a) and an anonymous function from this environment.
// 10 transfer to a
print(pr(5)); // 5 transfer to b //15
print(pr(10)); // 10 transfer to b //20
pr = funkOut(20);// 20 transfer to a
print(pr(5)); // 5 transfer to b //25
print(pr); // Closure: (int) => int
}
Function funkOut(int a) {
return (int b) => a + b;
}

How to ask Clang++ not to cache function result during -O3 optimization?

This is my code:
int foo(int x) {
return x + 1; // I have more complex code here
}
int main() {
int s = 0;
for (int i = 0; i < 1000000; ++i) {
s += foo(42);
}
}
Without -O3 this code works for a few minutes. With -O3 it returns the same result in no time. Clang++, I believe, caches the value of foo(42) (it's a pure function) and doesn't call it a million times. How can I instruct it NOT to apply this particular optimization for this particular function call?
Out of curiosity, can you share why you would want to disable that optimization?
Anyway, about your question:
In your example code, s is never read after the loop, so the compiler would throw the whole loop away. So let's assume that s is used after the loop.
I'm not aware of any pragmas or compiler options to disable a particular optimization in a particular section of code.
Is changing the code an option?
To prevent that optimization in a portable manner, you can look for a creative way to compute the function call argument in a way such that the compiler is no longer able to treat the argument as constant. Of course the challenge here is to actually use a trick that does not rely on undefined behavior and that cannot be "outsmarted" by a newer compiler version.
See the commented example below.
pro: you use a trick that uses only the language that you can apply selectively
con: you get an additional memory access in every loop iteration; however, the access will be satisfied by your CPU cache most of the time
I verified the generated assembly for your particular example with clang++ -O3 -S. The compiler now generates your loop and no longer caches the result. However, the function gets inlined. If you want to prevent that as well, you can declare foo with __attribute__((noinline)), for example.
int foo(int x) {
return x + 1; // I have more complex code here
}
volatile int dummy = 0; // initialized to 0 and never changed
int main() {
int s = 0;
for (int i = 0; i < 1000000; ++i) {
// Because of the volatile variable, the compiler is forced to assume
// that the function call argument is different for each loop
// iteration and it is no longer able to use a cached result.
s += foo(42 + dummy);
}
}

Destructured iteration over variadic arguments like a tuple sequence in D

Let's say I want to process a variadic function which alternately gets passed start and end values of 1 or more intervals and it should return a range of random values in those intervals. You can imagine the input to be a flattened sequence of tuples, all tuple elements spread over one single range.
import std.meta; //variadic template predicates
import std.traits : isFloatingPoint;
import std.range;
auto randomIntervals(T = U[0], U...)(U intervals)
if (U.length/2 > 0 && isFloatingPoint!T && NoDuplicates!U.length == 1) {
import std.random : uniform01;
T[U.length/2] randomValues;
// split and iterate over subranges of size 2
foreach(i, T start, T end; intervals.chunks(2)) { //= intervals.slide(2,2)
randomValues[i] = uniform01 * (end - start) + start,
}
return randomValues.dup;
}
The example is not important, I only use it for explanation. The chunk size could be any finite positive size_t, not only 2 and changing the chunk size should only require changing the number of loop-variables in the foreach loop.
In this form above it will not compile since it would only expect one argument (a range) to the foreach loop. What I would like is something which rather automatically uses or infers a sliding-window as a tuple, derived from the number of given loop-variables, and fills the additional variables with next elements of the range/array + allows for an additional index, optionally. According to the documentation a range of tuples allows destructuring of the tuple elements in place into foreach-loop-variables so the first thing, I thought about, is turning a range into a sequence of tuples but didn't find a convenience function for this.
Is there a simple way to loop over destructured subranges (with such a simplicity as shown in my example code) together with the index? Or is there a (standard library) function which does this job of splitting a range into enumerated tuples of equal size? How to easily turn the range of subranges into a range of tuples?
Is it possible with std.algorithm.iteration.map in this case (EDIT: with a simple function argument to map and without accessing tuple elements)?
EDIT: I want to ignore the last chunk which doesn't fit into the entire tuple. It just is not iterated over.
EDIT: It's not, that I couldn't program this myself, I only hope for a simple notation because this use case of looping over multiple elements is quite useful. If there is something like a "spread" or "rest" operator in D like in JavaScript, please let me know!
Thank you.
(Added as a separate answer because it's significantly different from my previous answer, and wouldn't fit in a comment)
After reading your comments and the discussion on the answers thus far, it seems to me what you seek is something like the below staticChunks function:
unittest {
import std.range : enumerate;
size_t index = 0;
foreach (i, a, b, c; [1,2,3,1,2,3].staticChunks!3.enumerate) {
assert(a == 1);
assert(b == 2);
assert(c == 3);
assert(i == index);
++index;
}
}
import std.range : isInputRange;
auto staticChunks(size_t n, R)(R r) if (isInputRange!R) {
import std.range : chunks;
import std.algorithm : map, filter;
return r.chunks(n).filter!(a => a.length == n).map!(a => a.tuplify!n);
}
auto tuplify(size_t n, R)(R r) if (isInputRange!R) {
import std.meta : Repeat;
import std.range : ElementType;
import std.typecons : Tuple;
import std.array : front, popFront, empty;
Tuple!(Repeat!(n, ElementType!R)) result;
static foreach (i; 0..n) {
result[i] = r.front;
r.popFront();
}
assert(r.empty);
return result;
}
Note that this also deals with the last chunk being a different size, if only by silently throwing it away. If this behavior is undesirable, remove the filter, and deal with it inside tuplify (or don't, and watch the exceptions roll in).
chunks and slide return Ranges, not tuples. Their last element can contain less than the specified size, whereas tuples have a fixed compile time size.
If you need destructuring, you have to implement your own chunks/slide that return tuples. To explicitly add an index to the tuple, use enumerate. Here is an example:
import std.typecons, std.stdio, std.range;
Tuple!(int, int)[] pairs(){
return [
tuple(1, 3),
tuple(2, 4),
tuple(3, 5)
];
}
void main(){
foreach(size_t i, int start, int end; pairs.enumerate){
writeln(i, ' ', start, ' ', end);
}
}
Edit:
As BioTronic said using map is also possible:
foreach(i, start, end; intervals
.chunks(2)
.map!(a => tuple(a[0], a[1]))
.enumerate){
Your question has me a little confused, so I'm sorry if I've misunderstood. What you're basically asking is if foreach(a, b; [1,2,3,4].chunks(2)) could work, right?
The simple solution here is to, as you say, map from chunk to tuple:
import std.typecons : tuple;
import std.algorithm : map;
import std.range : chunks;
import std.stdio : writeln;
unittest {
pragma(msg, typeof([1,2].chunks(2).front));
foreach(a, b; [1,2,3,4].chunks(2).map!(a => tuple(a[0], a[1]))) {
writeln(a, ", ", b);
}
}
At the same time with BioTronic, I tried to code some own solution to this problem (tested on DMD). My solution works for slices (BUT NOT fixed-size arrays) and avoids a call to filter:
import std.range : chunks, isInputRange, enumerate;
import std.range : isRandomAccessRange; //changed from "hasSlicing" to "isRandomAccessRange" thanks to BioTronics
import std.traits : isIterable;
/** turns chunks into tuples */
template byTuples(size_t N, M)
if (isRandomAccessRange!M) { //EDITED
import std.meta : Repeat;
import std.typecons : Tuple;
import std.traits : ForeachType;
alias VariableGroup = Tuple!(Repeat!(N, ForeachType!M)); //Tuple of N repititions of M's Foreach-iterated Type
/** turns N consecutive array elements into a Variable Group */
auto toTuple (Chunk)(Chunk subArray) #nogc #safe pure nothrow
if (isInputRange!Chunk) { //Chunk must be indexable
VariableGroup nextLoopVariables; //fill the tuple with static foreach loop
static foreach(index; 0 .. N) {
static if ( isRandomAccessRange!Chunk ) { // add cases for other ranges here
nextLoopVariables[index] = subArray[index];
} else {
nextLoopVariables[index] = subArray.popFront();
}
}
return nextLoopVariables;
}
/** returns a range of VariableGroups */
auto byTuples(M array) #safe pure nothrow {
import std.algorithm.iteration : map;
static if(!isInputRange!M) {
static assert(0, "Cannot call map() on fixed-size array.");
// auto varGroups = array[].chunks(N); //fixed-size arrays aren't slices by default and cannot be treated like ranges
//WARNING! invoking "map" on a chunk range from fixed-size array will fail and access wrong memory with no warning or exception despite #safe!
} else {
auto varGroups = array.chunks(N);
}
//remove last group if incomplete
if (varGroups.back.length < N) varGroups.popBack();
//NOTE! I don't know why but `map!toTuple` DOES NOT COMPILE! And will cause a template compilation mess.
return varGroups.map!(chunk => toTuple(chunk)); //don't know if it uses GC
}
}
void main() {
testArrayToTuples([1, 3, 2, 4, 5, 7, 9]);
}
// Order of template parameters is relevant.
// You must define parameters implicitly at first to be associated with a template specialization
void testArrayToTuples(U : V[], V)(U arr) {
double[] randomNumbers = new double[arr.length / 2];
// generate random numbers
foreach(i, double x, double y; byTuples!2(arr).enumerate ) { //cannot use UFCS with "byTuples"
import std.random : uniform01;
randomNumbers[i] = (uniform01 * (y - x) + x);
}
foreach(n; randomNumbers) { //'n' apparently works despite shadowing a template parameter
import std.stdio : writeln;
writeln(n);
}
}
Using elementwise operations with the slice operator would not work here because uniform01 in uniform01 * (ends[] - starts[]) + starts[] would only be called once and not multiple times.
EDIT: I also tested some online compilers for D for this code and it's weird that they behave differently for the same code. For compilation of D I can recommend
https://run.dlang.io/ (I would be very surprised if this one wouldn't work)
https://www.mycompiler.io/new/d (but a bit slow)
https://ideone.com (it works but it makes your code public! Don't use with protected code.)
but those didn't work for me:
https://tio.run/#d2 (didn't finish compilation in one case, otherwise wrong results on execution even when using dynamic array for the test)
https://www.tutorialspoint.com/compile_d_online.php (doesn't compile the static foreach)

using a string in a math equation in Dart

I store various formulas in Postgres and I want to use those formulas in my code. It would look something like this:
var amount = 100;
var formula = '5/105'; // normally something I would fetch from Postgres
var total = amount * formula; // should return 4.76
Is there a way to evaluate the string in this manner?
As far as I'm aware, there isn't a formula solver package developed for Dart yet. (If one exists or gets created after this post, we can edit it into the answer.)
EDIT: Mattia in the comments points out the math_expressions package, which looks pretty robust and easy to use.
There is a way to execute arbitrary Dart code as a string, but it has several problems. A] It's very roundabout and convoluted; B] it becomes a massive security issue; and C] it only works if the Dart is compiled in JIT mode (so in Flutter this means it will only work in debug builds, not release builds).
So the answer is that unfortunately, you will have to implement it yourself. The good news is that, for simple 4-function arithmetic, this is pretty straight-forward, and you can follow a tutorial on writing a calculator app like this one to see how it's done.
Of course, if all your formulas only contain two terms with an operator between them like in your example snippet, it becomes even easier. You can do the whole thing in just a few lines of code:
void main() {
final amount = 100;
final formula = '5/105';
final pattern = RegExp(r'(\d+)([\/+*-])(\d+)');
final match = pattern.firstMatch(formula);
final value = process(num.parse(match[1]), match[2], num.parse(match[3]));
final total = amount * value;
print(total); // Prints: 4.761904761904762
}
num process(num a, String operator, num b) {
switch (operator) {
case '+': return a + b;
case '-': return a - b;
case '*': return a * b;
case '/': return a / b;
}
throw ArgumentError(operator);
}
There are a few packages that can be used to accomplish this:
pub.dev/packages/function_tree
pub.dev/packages/math_expressions
pub.dev/packages/expressions
I used function_tree as follows:
double amount = 100.55;
String formula = '5/105*.5'; // From Postgres
final tax = amount * formula.interpret();
I haven't tried it, but using math_expressions it should look like this:
double amount = 100.55;
String formula = '5/105*.5'; // From Postgres
Parser p = Parser();
// Context is used to evaluate variables, can be empty in this case.
ContextModel cm = ContextModel();
Expression exp = p.parse(formula) * p.parse(amount.toString());
// or..
//Expression exp = p.parse(formula) * Number(amount);
double result = exp.evaluate(EvaluationType.REAL, cm);
// Result: 2.394047619047619
print('Result: ${result}');
Thanks to fkleon for the math_expressions help.

How do you make foreach use non-reference types for delegates?

Example code that produces the problem:
import std.stdio, core.thread;
void main() {
ThreadGroup tg = new ThreadGroup();
foreach (int i; 1 .. 5)
tg.create( () => writeln(i) );
tg.joinAll();
}
Sample output:
3
5
5
5
5
(The expected output was the integers 1 through 5.)
I don't get why this is happening -- i is not a reference type, nor is there a reference to it being used in the delegate, so why does each thread use the value of i as whatever value it happens to have when the thread is scheduled, instead of the presumably pass-by-value value it's given?
I've made a handful of lame attempts like this, but nothing's been successful:
foreach (int i; 1 .. 5) {
scope j = i;
tg.create( () => writeln(j) );
}
I'm curious as to why this doesn't work, either. Is it not declaring a fresh j each time? Why does each thread refer to the same j (whose value is usually 5 by the time the threads get scheduled)?
so why does each thread use the value of i as whatever value it happens to have when the thread is scheduled, instead of the presumably pass-by-value value it's given?
It's pass-by-value as far as the loop body goes, however that does not apply to the threads created in it. The threads will still refer to i by its address.
To fix this problem, you need to create a closure inside the loop:
import std.stdio, core.thread;
void main() {
ThreadGroup tg = new ThreadGroup();
foreach (int i; 1 .. 5)
(i =>
tg.create( () => writeln(i) )
)(i);
tg.joinAll();
}
The lambda parameter will be stored in the closure, giving each thread its own copy.

Resources