What vector space is Rocchio algorithm computed in? - search-engine

I have been trying to implement the Rocchio algorithm and I understand the basic idea behind the algorithm but I struggle to put it into concrete terms. I calculated tf_idf before and that is a vector of length of the number of query terms we search for each document that contains at least one of the query terms. But now, I feel like I cannot represent the document as a vector in the space formed just by the query terms because that will not allow me to "discover" other terms that the relevant documents have in common. Should I then represent the vector of the query and vectors of the documents in a vector space of all the tokens found in the currently returned set of documents?

Blockquote yes the dimension of the vectors (both docs and queries) is the vocabulary size of the collection... so these vectors are extremely sparse (most entries being zeroes)...
Yes, as #Debasis said this was the correct answer.

Related

Document similarity: Vector embedding versus Tf-Idf performance?

I have a collection of documents, where each document is rapidly growing with time. The task is to find similar documents at any fixed time. I have two potential approaches:
A vector embedding (word2vec, GloVe or fasttext), averaging over word vectors in a document, and using cosine similarity.
Bag-of-Words: tf-idf or its variations such as BM25.
Will one of these yield a significantly better result? Has someone done a quantitative comparison of tf-idf versus averaging word2vec for document similarity?
Is there another approach, that allows to dynamically refine the document's vectors as more text is added?
doc2vec or word2vec ?
According to article, the performance of doc2vec or paragraph2vec is poor for short-length documents. [Learning Semantic Similarity for Very Short Texts, 2015, IEEE]
Short-length documents ...?
If you want to compare the similarity between short documents, you might want to vectorize the document via word2vec.
how construct ?
For example, you can construct a document vector with a weighted average vector using tf-idf.
similarity measure
In addition, I recommend using ts-ss rather than cosine or euclidean for similarity.
Please refer to the following article or the summary in github below.
"A Hybrid Geometric Approach for Measuring Similarity Level Among Documents and Document Clustering"
https://github.com/taki0112/Vector_Similarity
thank you
You have to try it: the answer may vary based on your corpus and application-specific perception of 'similarity'. Effectiveness may especially vary based on typical document lengths, so if "rapidly growing with time" also means "growing arbitrarily long", that could greatly affect what works over time (requiring adaptations for longer docs).
Also note that 'Paragraph Vectors' – where a vector is co-trained like a word vector to represent a range-of-text – may outperform a simple average-of-word-vectors, as an input to similarity/classification tasks. (Many references to 'Doc2Vec' specifically mean 'Paragraph Vectors', though the term 'Doc2Vec' is sometimes also used for any other way of turning a document into a single vector, like a simple average of word-vectors.)
You may also want to look at "Word Mover's Distance" (WMD), a measure of similarity between two texts that uses word-vectors, though not via any simple average. (However, it can be expensive to calculate, especially for longer documents.) For classification, there's a recent refinement called "Supervised Word Mover's Distance" which reweights/transforms word vectors to make them more sensitive to known categories. With enough evaluation/tuning data about which of your documents should be closer than others, an analogous technique could probably be applied to generic similarity tasks.
You also might consider trying Jaccard similarity, which uses basic set algebra to determine the verbal overlap in two documents (although it is somewhat similar to a BOW approach). A nice intro on it can be found here.

Features of vector form of sentences for opinion finding.

I want to find the opinion of a sentence either positive or negative. For example talk about only one sentence.
The play was awesome
If change it to vector form
[0,0,0,0]
After searching through the Bag of words
bad
naughty
awesome
The vector form becomes
[0,0,0,1]
Same for other sentences. Now I want to pass it to the machine learning algorithm for training it. How can I train the network using these multiple vectors? (for finding the opinion of unseen sentences) Obviously not! Because the input is fix in neural network. Is there any way? The above procedure is just my thinking. Kindly correct me if I am wrong. Thanks in advance.
Since your intuitive input format is "Sentence". Which is, indeed, a string of tokens with arbitrary length. Abstracting sentences as token series is not a good choice for many existing algorithms only works on determined format of inputs.
Hence, I suggest try using tokenizer on your entire training set. This will give you vectors of length of the dictionary, which is fixed for given training set.
Because when the length of sentences vary drastically, then size of the dictionary always keeps stable.
Then you can apply Neural Networks(or other algorithms) to the tokenized vectors.
However, vectors generated by tokenizer is extremely sparse because you only work on sentences rather than articles.
You can try LDA (supervised, not PCA), to reduce the dimension as well as amplify the difference.
That will keep the essential information of your training data as well as express your data at fixed size, while this "size" is not too large.
By the way, you may not have to label each word by its attitude since the opinion of a sentence also depends on other kind of words.
Simple arithmetics on number of opinion-expressing words many leave your model highly biased. Better label the sentences and leave the rest job to classifiers.
For the confusions
PCA and LDA are Dimensional Reduction techniques.
difference
Let's assume each tuple of sample is denoted as x (1-by-p vector).
p is too large, we don't like that.
Let's find a matrix A(p-by-k) in which k is pretty small.
So we get reduced_x = x*A, and most importantly, reduced_x must
be able to represent x's characters.
Given labeled data, LDA can provide proper A that can maximize
distance between reduced_x of different classes, and also minimize
the distance within identical classes.
In simple words: compress data, keep information.
When you've got
reduced_x, you can define training data: (reduced_x|y) where y is
0 or 1.

Bag of Features / Visual Words + Locality Sensitive Hashing

PREMISE:
I'm really new to Computer Vision/Image Processing and Machine Learning (luckily, I'm more expert on Information retrieval), so please be kind with this filthy peasant! :D
MY APPLICATION:
We have a mobile application where the user takes a photo (the query) and the system returns the most similar picture thas was previously taken by some other user (the dataset element). Time performances are crucial, followed by precision and finally by memory usage.
MY APPROACH:
First of all, it's quite obvious that this is a 1-Nearest Neighbor problem (1-NN). LSH is a popular, fast and relatively precise solution for this problem. In particular, my LSH impelementation is about using Kernalized Locality Sensitive Hashing to achieve a good precision to translate a d-dimension vector to a s-dimension binary vector (where s<<d) and then use Fast Exact Search in Hamming Space
with Multi-Index Hashing to quickly find the exact nearest neighbor between all the vectors in the dataset (transposed to hamming space).
In addition, I'm going to use SIFT since I want to use a robust keypoint detector&descriptor for my application.
WHAT DOES IT MISS IN THIS PROCESS?
Well, it seems that I already decided everything, right? Actually NO: in my linked question I face the problem about how to represent the set descriptor vectors of a single image into a vector. Why do I need it? Because a query/dataset element in LSH is vector, not a matrix (while SIFT keypoint descriptor set is a matrix). As someone suggested in the comments, the commonest (and most efficient) solution is using the Bag of Features (BoF) model, which I'm still not confident with yet.
So, I read this article, but I have still some questions (see QUESTIONS below)!
QUESTIONS:
First and most important question: do you think that this is a reasonable approach?
Is k-means used in the BoF algorithm the best choice for such an application? What are alternative clustering algorithms?
The dimension of the codeword vector obtained by the BoF is equal to the number of clusters (so k parameter in the k-means approach)?
If 2. is correct, bigger is k then more precise is the BoF vector obtained?
There is any "dynamic" k-means? Since the query image must added to the dataset after the computation is done (remember: the dataset is formed by the images of all submitted queries) the cluster can change in time.
Given a query image, is the process to obtain the codebook vector the same as the one for a dataset image, e.g. we assign each descriptor to a cluster and the i-th dimension of the resulting vector is equal to the number of descriptors assigned to the i-th cluster?
It looks like you are building codebook from a set of keypoint features generated by SIFT.
You can try "mixture of gaussians" model. K-means assumes that each dimension of a keypoint is independent while "mixture of gaussians" can model the correlation between each dimension of the keypoint feature.
I can't answer this question. But I remember that the SIFT keypoint, by default, has 128 dimensions. You probably want a smaller number of clusters like 50 clusters.
N/A
You can try Infinite Gaussian Mixture Model or look at this paper: "Revisiting k-means: New Algorithms via Bayesian Nonparametrics" by Brian Kulis and Michael Jordan!
Not sure if I understand this question.
Hope this help!

Fast k-NN search over bag-of-words models

I have a large amount of documents of equal size. For each of those documents I'm building a bag of words model (BOW). Number of possible words in all documents is limited and large (2^16 for example). Generally speaking, I have N histograms of size K, where N is a number of documents and K is histogram width. I can calculate distance between any two histograms.
First optimization opportunity. Documents usually uses only small subset of words (usually less then 5%, most of them less then 0.5%).
Second optimization opportunity Subset of used words is varying from document to document much so I can use bits instead of word counts.
Query by content
Query is a document as well. I need to find k most similar documents.
Naive approach
Calculate BOW model from query.
For each document in dataset:
Calculate it's BOW model.
Find distance between query and document.
Obviously, some data structure should be used to track top-ranked documents (priority queue for example).
I need some sort of index to get rid of full database scan. KD-tree comes to mind but dimensionality and size of the dataset is very high. One can suggest to use some subset of possible words as features but I don't have separate training phase and can't extract this features beforehand.
I've thought about using MinHash algorithm to prune search space but I can't design an appropriate hash functions for this task.
k-d-tree and similar indexes are for dense and continuous data.
Your data most likely is sparse.
A good index for finding the nearest neighbors on sparse data is inverted lists. Essentially the same way search engines like Google work.

LSA - Feature selection

I have this SVD decomposition of the document
I've read this page, but I don't understand how can I compute the best feature for document separation.
I know that:
S x Vt gives me relation between documents and features
U x S gives me relation between terms and features
But what is the key for the best feature selection?
SVD is concerned only with inputs, and not with their labels. In other words, it can be seen as an unsupervised technique. As such, it cannot tell you what features are good for separation, without making any further assumptions.
What it does tell you, is what 'basis vectors' are more important then others, in terms of reconstructing the original data using only a subset of the basis vectors.
Nevertheless, you can think about LSA in the following manner (this is only interpretation, the math is what important): A document is generated by a mixture of topics. Each topic is represented by a vector of length n, which tells you how likely is each word in this topic. For example, if the topic is sports, then words like football or game are more likely than bestseller or movie. These topic-vectors are the columns of U. In order to generate a document (a column of A), you take a linear combination of topics. The coefficients of the linear combination are the columns of Vt - each column tells you what proportion of topics to take in order to generate a document. In addition, each topic has an overall 'gain' factor, which tells you how much this topic is important in your set of documents (maybe you have just one document about sports out of 1000 total documents). These are the singular values == the diagonal of S. If you throw away the smaller ones, you can represent your original matrix A with less topics, and small amount of information lost. Of course, 'small' is a matter of application.
One drawback of LSA is that it is not entirely clear how to interpret the numbers - they are not probabilities, for example. It makes sense to have "0.5" units of sports in a document, but what does it mean to have "-1" units?

Resources