Neo4j poor performance on ORDER BY - neo4j

I have query like this
MATCH (p:Person)-[s:KNOWS]->(t:Person) WHERE s.state = "blocked"
WITH DISTINCT (t) AS user
SKIP 0
LIMIT 10
MATCH (user)<-[r:KNOWS { state: "blocked" }]-(p:Person)
RETURN user.username, SIZE(COLLECT(p.username)) as count
First problem is when I have SKIP for example 100, it's getting slower, any idea why?
Seconds problem is, when I try to add ORDER BY, for example ORDER BY p.createdAt which is date (indexed field), it's always timing out.

You might have better performance with a tweak to your initial MATCH:
MATCH (t:Person)
WHERE ()-[:KNOWS {state:"blocked"}]->(t)
WITH t AS user // no longer need DISTINCT here
...
For better performance you might consider creating a fulltext schema index on :KNOWS relationships by their state property, and use the fulltext index query procedure to do this initial lookup (this is assuming :KNOWS relationships always connect two :Person nodes).

Related

Correct order of operations in neo4j - LOAD, MERGE, MATCH, WITH, SET

I am loading simple csv data into neo4j. The data is simple as follows :-
uniqueId compound value category
ACT12_M_609 mesulfen 21 carbon
ACT12_M_609 MNAF 23 carbon
ACT12_M_609 nifluridide 20 suphate
ACT12_M_609 sulfur 23 carbon
I am loading the data from the URL using the following query -
LOAD CSV WITH HEADERS
FROM "url"
AS row
MERGE( t: Transaction { transactionId: row.uniqueId })
MERGE(c:Compound {name: row.compound})
MERGE (t)-[r:CONTAINS]->(c)
ON CREATE SET c.category= row.category
ON CREATE SET r.price =row.value
Next I do the aggregation to count total orders for a compound and create property for a node in the following way -
MATCH (c:Compound) <-[:CONTAINS]- (t:Transaction)
with c.name as name, count( distinct t.transactionId) as ord
set c.orders = ord
So far so good. I can accomplish what I want but I have the following 2 questions -
How can I create the orders property for compound node in the first step itself? .i.e. when I am loading the data I would like to perform the aggregation straight away.
For a compound node I am also setting the property for category. Theoretically, it can also be modelled as category -contains-> compound by creating Categorynode. But what advantage will I have if I do it? Because I can execute the queries and get the expected output without creating this additional node.
Thank you for your answer.
I don't think that's possible, LOAD CSV goes over one row at a time, so at row 1, it doesn't know how many more rows will follow.
I guess you could create virtual nodes and relationships, aggregate those and then use those to create the real nodes, but that would be way more complicated. Virtual Nodes/Rels
That depends on the questions/queries you want to ask.
A graph database is optimised for following relationships, so if you often do a query where the category is a criteria (e.g. MATCH (c: Category {category_id: 12})-[r]-(:Compound) ), it might be more performant to create a label for it.
If you just want to get the category in the results (e.g. RETURN compound.category), then it's fine as a property.

Low performance of neo4j

I am server engineer in company that provide dating service.
Currently I am building a PoC for our new recommendation engine.
I try to use neo4j. But performance of this database does not meet our needs.
I have strong feeling that I am doing something wrong and neo4j can do much better.
So can someone give me an advice how to improve performance of my Cypher’s query or how to tune neo4j in right way?
I am using neo4j-enterprise-2.3.1 which is running on c4.4xlarge instance with Amazon Linux.
In our dataset each user can have 4 types of relationships with others users - LIKE, DISLIKE, BLOCK and MATCH.
Also he has a properties like countryCode, birthday and gender.
I made import of all our users and relationships from RDBMS to neo4j using neo4j-import tool.
So each user is a node with properties and each reference is a relationship.
The report from neo4j-import tool said that :
2 558 667 nodes,
1 674 714 539 properties and
1 664 532 288 relationships
were imported.
So it’s huge DB :-) In our case some nodes can have up to 30 000 outgoing relationships..
I made 3 indexes in neo4j :
Indexes
ON :User(userId) ONLINE
ON :User(countryCode) ONLINE
ON :User(birthday) ONLINE
Then I try to build online recommendation engine using this query :
MATCH (me:User {userId: {source_user_id} })-[:LIKE | :MATCH]->()<-[:LIKE | :MATCH]-(similar:User)
USING INDEX me:User(userId)
USING INDEX similar:User(birthday)
WHERE similar.birthday >= {target_age_gte} AND
similar.birthday <= {target_age_lte} AND
similar.countryCode = {target_country_code} AND
similar.gender = {source_gender}
WITH similar, count(*) as weight ORDER BY weight DESC
SKIP {skip_similar_person} LIMIT {limit_similar_person}
MATCH (similar)-[:LIKE | :MATCH]-(recommendation:User)
WITH recommendation, count(*) as sheWeight
WHERE recommendation.birthday >= {recommendation_age_gte} AND
recommendation.birthday <= {recommendation_age_lte} AND
recommendation.gender= {target_gender}
WITH recommendation, sheWeight ORDER BY sheWeight DESC
SKIP {skip_person} LIMIT {limit_person}
MATCH (me:User {userId: {source_user_id} })
WHERE NOT ((me)--(recommendation))
RETURN recommendation
here is the execution plan for one of the user :
plan
When I executed this query for list of users I had the result :
count=2391, min=4565.128849, max=36257.170065, mean=13556.750555555178, stddev=2250.149335254768, median=13405.409811, p75=15361.353029999998, p95=17385.136478, p98=18040.900481, p99=18426.811424, p999=19506.149138, mean_rate=0.9957385490980866, m1=1.2148195797996817, m5=1.1418078036067119, m15=0.9928564378521962, rate_unit=events/second, duration_unit=milliseconds
So even the fastest is too slow for Real-time recommendations..
Can you tell me what I am doing wrong?
Thanks.
EDIT 1 : plan with the expanded boxes :
I built an unmanaged extension to see if I could do better than Cypher. You can grab it here => https://github.com/maxdemarzi/social_dna
This is a first shot, there are a couple of things we can do to speed things up. We can pre-calculate/save similar users, cache things here and there, and random other tricks. Give it a shot, let us know how it goes.
Regards,
Max
If I'm reading this right, it's finding all matches for users by userId and separately finding all matches for users by your various criteria. It's then finding all of the places that they come together.
Since you have a case where you're starting on the left with a single node, my guess is that we'd be better served by following the paths and then filtering what it gotten via relationship traversal.
Let's see how starting like this works for you:
MATCH
(me:User {userId: {source_user_id} })-[:LIKE | :MATCH]->()
<-[:LIKE | :MATCH]-(similar:User)
WITH similar
WHERE similar.birthday >= {target_age_gte} AND
similar.birthday <= {target_age_lte} AND
similar.countryCode = {target_country_code} AND
similar.gender = {source_gender}
WITH similar, count(*) as weight ORDER BY weight DESC
SKIP {skip_similar_person} LIMIT {limit_similar_person}
MATCH (similar)-[:LIKE | :MATCH]-(recommendation:User)
WITH recommendation, count(*) as sheWeight
WHERE recommendation.birthday >= {recommendation_age_gte} AND
recommendation.birthday <= {recommendation_age_lte} AND
recommendation.gender= {target_gender}
WITH recommendation, sheWeight ORDER BY sheWeight DESC
SKIP {skip_person} LIMIT {limit_person}
MATCH (me:User {userId: {source_user_id} })
WHERE NOT ((me)--(recommendation))
RETURN recommendation
[UPDATED]
One possible (and nonintuitive) cause of inefficiency in your query is that when you specify the similar:User(birthday) filter, Cypher uses an index seek with the :User(birthday) index (and additional tests for countryCode and gender) to find all possible DB matches for similar. Let's call that large set of similar nodes A.
Only after finding A does the query filter to see which of those nodes are actually connected to me, as specified by your MATCH pattern.
Now, if there are relatively few me to similar paths (as specified by the MATCH pattern, but without considering its WHERE clause) as compared to the size of A -- say, 2 or more orders of magnitude smaller -- then it might be faster to remove the :User label from similar (since I presume they are probably all going to be users anyway, in your data model), and also remove the USING INDEX similar:User(birthday) clause. In this case, not using the index for similar may actually be faster for you, since you will only be using the WHERE clause on a relatively small set of nodes.
The same considerations also apply to the recommendation node.
Of course, this all has to be verified by testing on your actual data.

Returning like count and whether current user liked a post in Cypher

I have a possibly bone-headed question, but I'm just starting out with Neo4j, and I hope someone can help me out with learning Cypher syntax, which I've just started learning and evaluating.
I have two User nodes, and a single NewsPost node. Both users LIKE the NewsPost. I'm able to construct a Cypher query to count the likes for the post, but I'm wondering if it's also possible to check if the current user has liked the post in the same query.
What I have so far for a Cypher query is
match (p:NewsPost)<-[r:LIKES]-(u:User)
where id(p) = 1
return p, count(*)
Which returns the post and like count, but I can't figure out the other part of "has the current user liked this post". I know you're not supposed to filter on <id>, but I learned that after the fact and I'll go back and fix it later.
So first, is it possible to answer the "has the current user liked this post" question in the same query? And if so, how do I modify my query to do that?
The smallest change to your query that adds a true/false test for a particular user liking the news post would be
MATCH (p:NewsPost)<-[r:LIKES]-(u:User)
WHERE ID(p) = 1
RETURN p, count(r), 0 < size(p<-[:LIKES]-(:User {email:"michael#nero.com"}))
This returns, in addition to your query, the comparison of 0 being less than the size of the path from the news post node via an incoming likes relationship to a user node with email address michael#nero.com. If there is no such path you get false, if there is one or more such paths you get true.
If that does what you want you can go ahead and change the query a little, for instance use RETURN ... AS ... to get nicer result identifiers, and so on.
What you are looking for is Case.
In your database you should have something unique for each user (id property, email or maybe login, I don't know), so you have to match this user, and then match the relation to the post you want, using case you can return a boolean.
Example:
Optional Match (u:User{login:"Michael"})-[r:LIKES]-(p:newPost{id:1})
return CASE WHEN r IS NULL THEN false ELSE true END as userLikesTopic
If you want to get the relation directly (to get a property in it as example) you can remove the CASE part and directly return r, if it does not exist, null will be returned from the query.

Neo4j cyper performance on simple match

I have a very simple cypher which give me a poor performance.
I have approx. 2 million user and 60 book category with relation from user to category around 28 million.
When I do this cypher:
MATCH (u:User)-[read:READ]->(bc:BookCategory)
WHERE read.timestamp >= timestamp() - (1000*60*60*24*30)
RETURN distinct(bc.id);
It returns me 8.5k rows within 2 - 2.5 (First time) minutes
And when I do this cypher:
MATCH (u:User)-[read:READ]->(bc:BookCategory)
WHERE read.timestamp >= timestamp() - (1000*60*60*24*30)
RETURN u.id, u.email, read.timestamp;
It return 55k rows within 3 to 6 (First time) minutes.
I already have index on User id and email, but still I don't think this performance is acceptable. Any idea how can I improve this?
First of all, you can profile your query, to find what happens under the hood.
Currently looks like that query scans all nodes in database to complete query.
Reasons:
Neo4j support indexes only for '=' operation (or 'IN')
To complete query, it traverses all nodes, one by one, checking each node if it has valid timestamp
There is no straightforward way to deal with this problem.
You should look into creating proper graph structure, to deal with Time-specific queries more efficiently. There are several ways how to represent time in graph databases.
You can take look on graphaware/neo4j-timetree library.
Can you explain your model a bit?
Where are the books and the "reading"-Event in it?
Afaik all you want to know, which book categories have been recently read (in the last month)?
You could create a second type of relationship thats RECENTLY_READ which expires (is deleted) by a batch job it is older than 30 days. (That can be two simple cypher statements which create and delete those relationships).
WITH (1000*60*60*24*30) as month
MATCH (a:User)-[read:READ]->(b:BookCategory)
WHERE read.timestamp >= timestamp() - month
MERGE (a)-[rr:RECENTLY_READ]->(b)
WHERE coalesce(rr.timestamp,0) < read.timestamp
SET rr.timestamp = read.timestamp;
WITH (1000*60*60*24*30) as month
MATCH (a:User)-[rr:RECENTLY_READ]->(b:BookCategory)
WHERE rr.timestamp < timestamp() - month
DELETE rr;
There is another way to achieve what you exactly want to do here, but it's unfortunately not possible in Cypher.
With a relationship-index on timestamp on your read relationship you can run a Lucene-NumericRangeQuery in Neo4j's Java API.
But I wouldn't really recommend to go down this route.

Can Neo4j be effectively used to show a collection of nodes in a sortable and filterable table?

I realise this may not be ideal usage, but apart from all the graphy goodness of Neo4j, I'd like to show a collection of nodes, say, People, in a tabular format that has indexed properties for sorting and filtering
I'm guessing the Type of a node can be stored as a Link, say Bob -> type -> Person, which would allow us to retrieve all People
Are the following possible to do efficiently (indexed?) and in a scalable manner?
Retrieve all People nodes and display all of their names, ages, cities of birth, etc (NOTE: some of this data will be properties, some Links to other nodes (which could be denormalised as properties for table display's and simplicity's sake)
Show me all People sorted by Age
Show me all People with Age < 30
Also a quick how to do the above (or a link to some place in the docs describing how) would be lovely
Thanks very much!
Oh and if the above isn't a good idea, please suggest a storage solution which allows both graph-like retrieval and relational-like retrieval
if you want to operate on these person nodes, you can put them into an index (default is Lucene) and then retrieve and sort the nodes using Lucene (see for instance How do I sort Lucene results by field value using a HitCollector? on how to do a custom sort in java). This will get you for instance People sorted by Age etc. The code in Neo4j could look like
Transaction tx = neo4j.beginTx();
idxManager = neo4j.index()
personIndex = idxManager.forNodes('persons')
personIndex.add(meNode,'name',meNode.getProperty('name'))
personIndex.add(youNode,'name',youNode.getProperty('name'))
tx.success()
tx.finish()
'*** Prepare a custom Lucene query context with Neo4j API ***'
query = new QueryContext( 'name:*' ).sort( new Sort(new SortField( 'name',SortField.STRING, true ) ) )
results = personIndex.query( query )
For combining index lookups and graph traversals, Cypher is a good choice, e.g.
START people = node:people_index(name="E*") MATCH people-[r]->() return people.name, r.age order by r.age asc
in order to return data on both the node and the relationships.
Sure, that's easily possible with the Neo4j query language Cypher.
For example:
start cat=node:Types(name='Person')
match cat<-[:IS_A]-person-[born:BORN]->city
where person.age > 30
return person.name, person.age, born.date, city.name
order by person.age asc
limit 10
You can experiment with it in our cypher console.

Resources