Any way to detect `UnsafeMutablePointer` has been deallocated? - ios

I got a custom observer which is checking if changes have been made to objects it is observing. The object holds reference to the original property (pointer) in an UnsafeMutablePointer ... the problem is that all works jolly good unless the original value deallocates and I start getting random values from whatever now occupies that bit of memory ...
Is there any way to detect the original object is gone so I can invalidate my observer?
Edit: To make clear what I am trying to achieve I have added my current implementation (which kinda works for local class variables):
class Observer<Observed> where Observed: Equatable {
typealias Binder = ((Observed) -> ())
typealias Storage = UnsafeMutablePointer<Observed>
private var storage: Storage
private var bind: Binder
private var running: Bool
init(_ value: Storage, binder: #escaping Binder) {
storage = value
bind = binder
running = true
var val: Observed = value.pointee
DispatchQueue.global().async {
while self.running {
if val != value.pointee {
self.bind(value.pointee)
val = value.pointee
}
}
}
}
var value: Observed {
return storage.pointee
}
deinit {
running = false
}
}

No; it is your responsibility to ensure that an unsafe pointer cannot outlive its referenced object. ("Important memory details are your problem" is what Swift generally means by the "Unsafe" designation.)
Generally the correct tool here is a weak reference rather than a pointer.
Your observation code is incorrect in numerous ways. The basic approach of a tight loop that reads the value and compares it to an existing value is going to drain battery very quickly even if it had no other problems. It's also invalid because your pointee isn't thread-safe. You can't read it on a random thread and be promised a coherent value.
Swift doesn't promise that value types stay at the same place in memory, so even if the value still "exists," your pointer is not promised to point to it. It doesn't even promise that value types have a heap (i.e. persistent) memory location; they may be stored on the stack or even in registers. When you take a pointer to it, it may create a temporary copy in order to provide a memory location, but it's not promised to be the same memory as other references to it. That's the whole point of a value type. It can be freely copied and moved around (and even entirely optimized away in some cases). If you need to be able to refer to the instance, then you need a reference type.

Related

Understanding Swift thread safety

I have encountered a data race in my app using Xcode's Thread Sanitizer and I have a question on how to address it.
I have a var defined as:
var myDict = [Double : [Date:[String:Any]]]()
I have a thread setup where I call a setup() function:
let queue = DispatchQueue(label: "my-queue", qos: .utility)
queue.async {
self.setup {
}
}
My setup() function essentially loops through tons of data and populates myDict. This can take a while, which is why we need to do it asynchronously.
On the main thread, my UI accesses myDict to display its data. In a cellForRow: method:
if !myDict.keys.contains(someObject) {
//Do something
}
And that is where I get my data race alert and the subsequent crash.
Exception NSException * "-[_NSCoreDataTaggedObjectID objectForKey:]:
unrecognized selector sent to instance
0x8000000000000000" 0x0000000283df6a60
Please kindly help me understand how to access a variable in a thread safe manner in Swift. I feel like I'm possibly half way there with setting, but I'm confused on how to approach getting on the main thread.
One way to access it asynchronously:
typealias Dict = [Double : [Date:[String:Any]]]
var myDict = Dict()
func getMyDict(f: #escaping (Dict) -> ()) {
queue.async {
DispatchQueue.main.async {
f(myDict)
}
}
}
getMyDict { dict in
assert(Thread.isMainThread)
}
Making the assumption, that queue possibly schedules long lasting closures.
How it works?
You can only access myDict from within queue. In the above function, myDict will be accessed on this queue, and a copy of it gets imported to the main queue. While you are showing the copy of myDict in a UI, you can simultaneously mutate the original myDict. "Copy on write" semantics on Dictionary ensures that copies are cheap.
You can call getMyDict from any thread and it will always call the closure on the main thread (in this implementation).
Caveat:
getMyDict is an async function. Which shouldn't be a caveat at all nowadays, but I just want to emphasise this ;)
Alternatives:
Swift Combine. Make myDict a published Value from some Publisher which implements your logic.
later, you may also consider to use async & await when it is available.
Preface: This will be a pretty long non-answer. I don't actually know what's wrong with your code, but I can share the things I do know that can help you troubleshoot it, and learn some interesting things along the way.
Understanding the error
Exception NSException * "-[_NSCoreDataTaggedObjectID objectForKey:]: unrecognized selector sent to instance 0x8000000000000000"
An Objective C exception was thrown (and not caught).
The exception happened when attempting to invoke -[_NSCoreDataTaggedObjectID objectForKey:]. This is a conventional way to refer to an Objective C method in writing. In this case, it's:
An instance method (hence the -, rather than a + that would be used for class methods)
On the class _NSCoreDataTaggedObjectID (more on this later)
On the method named objectForKey:
The object receiving this method invocation is the one with address 0x8000000000000000.
This is a pretty weird address. Something is up.
Another hint is the strange class name of _NSCoreDataTaggedObjectID. There's a few observations we can make about it:
The prefixed _NS suggests that it's an internal implementation detail of CoreData.
We google the name to find class dumps of the CoreData framework, which show us that:
_NSCoreDataTaggedObjectID subclasses _NSScalarObjectID
Which subclasses _NSCoreManagedObjectID
Which subclasses NSManagedObjectID
NSManagedObjectID is a public API, which has its own first-party documentation.
It has the word "tagged" in its name, which has a special meaning in the Objective C world.
Some back story
Objective C used message passing as its sole mechanism for method dispatch (unlike Swift which usually prefers static and v-table dispatch, depending on the context). Every method call you wrote was essentially syntactic sugar overtop of objc_msgSend (and its variants), passing to it the receiver object, the selector (the "name" of the method being invoked) and the arguments. This was a special function that would do the job of checking the class of the receiver object, and looking through that classes' hierarchy until it found a method implementation for the desired selector.
This was great, because it allows you to do a lot of cool runtime dynamic behaviour. For example, menu bar items on a macOS app would just define the method name they invoke. Clicking on them would "send that message" to the responder chain, which would invoke that method on the first object that had an implementation for it (the lingo is "the first object that answers to that message").
This works really well, but has several trade-offs. One of them was that everything had to be an object. And by object, we mean a heap-allocated memory region, whose first several words of memory stored meta-data for the object. This meta-data would contain a pointer to the class of the object, which was necessary for doing the method-loopup process in objc_msgSend as I just described.
The issue is, that for small objects, (particularly NSNumber values, small strings, empty arrays, etc.) the overhead of these several words of object meta-data might be several times bigger than the actual object data you're interested in. E.g. even though NSNumber(value: true /* or false */) stores a single bit of "useful" data, on 64 bit systems there would be 128 bits of object overhead. Add to that all the malloc/free and retain/release overhead associated with dealing with large numbers of tiny object, and you got a real performance issue.
"Tagged pointers" were a solution to this problem. The idea is that for small enough values of particular privileged classes, we won't allocate heap memory for their objects. Instead, we'll store their objects' data directly in their pointer representation. Of course, we would need a way to know if a given pointer is a real pointer (that points to a real heap-allocated object), or a "fake pointer" that encodes data inline.
The key realization that malloc only ever returns memory aligned to 16-byte boundaries. This means that 4 bits of every memory address were always 0 (if they weren't, then it wouldn't have been 16-byte aligned). These "unused" 4 bits could be employed to discriminate real pointers from tagged pointers. Exactly which bits are used and how differs between process architectures and runtime versions, but the general idea is the same.
If a pointer value had 0000 for those 4 bits then the system would know it's a real object pointer that points to a real heap-allocated object. All other possible values of those 4-bit values could be used to signal what kind of data is stored in the remaining bits. The Objective C runtime is actually opensource, so you can actually see the tagged pointer classes and their tags:
{
// 60-bit payloads
OBJC_TAG_NSAtom = 0,
OBJC_TAG_1 = 1,
OBJC_TAG_NSString = 2,
OBJC_TAG_NSNumber = 3,
OBJC_TAG_NSIndexPath = 4,
OBJC_TAG_NSManagedObjectID = 5,
OBJC_TAG_NSDate = 6,
// 60-bit reserved
OBJC_TAG_RESERVED_7 = 7,
// 52-bit payloads
OBJC_TAG_Photos_1 = 8,
OBJC_TAG_Photos_2 = 9,
OBJC_TAG_Photos_3 = 10,
OBJC_TAG_Photos_4 = 11,
OBJC_TAG_XPC_1 = 12,
OBJC_TAG_XPC_2 = 13,
OBJC_TAG_XPC_3 = 14,
OBJC_TAG_XPC_4 = 15,
OBJC_TAG_NSColor = 16,
OBJC_TAG_UIColor = 17,
OBJC_TAG_CGColor = 18,
OBJC_TAG_NSIndexSet = 19,
OBJC_TAG_NSMethodSignature = 20,
OBJC_TAG_UTTypeRecord = 21,
// When using the split tagged pointer representation
// (OBJC_SPLIT_TAGGED_POINTERS), this is the first tag where
// the tag and payload are unobfuscated. All tags from here to
// OBJC_TAG_Last52BitPayload are unobfuscated. The shared cache
// builder is able to construct these as long as the low bit is
// not set (i.e. even-numbered tags).
OBJC_TAG_FirstUnobfuscatedSplitTag = 136, // 128 + 8, first ext tag with high bit set
OBJC_TAG_Constant_CFString = 136,
OBJC_TAG_First60BitPayload = 0,
OBJC_TAG_Last60BitPayload = 6,
OBJC_TAG_First52BitPayload = 8,
OBJC_TAG_Last52BitPayload = 263,
OBJC_TAG_RESERVED_264 = 264
You can see, strings, index paths, dates, and other similar "small and numerous" classes all have reserved pointer tag values. For each of these "normal classes" (NSString, NSDate, NSNumber, etc.), there's a special internal subclass which implements all the same public API, but using a tagged pointer instead of a regular object.
As you can see, there's a value for OBJC_TAG_NSManagedObjectID. It turns out, that NSManagedObjectID objects were numerous and small enough that they would benefit greatly for this tagged-pointer representation. After all, the value of NSManagedObjectID might be a single integer, much like NSNumber, which would be wasteful to heap-allocate.
If you'd like to learn more about tagged pointers, I'd recommend Mike Ash's writings, such as https://www.mikeash.com/pyblog/friday-qa-2012-07-27-lets-build-tagged-pointers.html
There was also a recent WWDC talk on the subject: WWDC 2020 - Advancements in the Objective-C runtime
The strange address
So in the previous section we found out that _NSCoreDataTaggedObjectID is the tagged-pointer subclass of NSManagedObjectID. Now we can notice something else that's strange, the pointer value we saw had a lot of zeros: 0x8000000000000000. So what we're dealing with is probably some kind of uninitialized-state of an object.
Conclusion
The call stack can shed further light on where this happens exactly, but what we know is that somewhere in your program, the objectForKey: method is being invoked on an uninitialized value of NSManagedObjectID.
You're probably accessing a value too-early, before it's properly initialized.
To work around this you can take one of several approaches:
A future ideal world, use would just use the structured concurrency of Swift 5.5 (once that's available on enough devices) and async/await to push the work on the background and await the result.
Use a completion handler to invoke your value-consuming code only after the value is ready. This is most immediately-easy, but will blow up your code base with completion handler boilerplate and bugs.
Use a concurrency abstraction library, like Combine, RxSwift, or PromiseKit. This will be a bit more work to set up, but usually leads to much clearer/safer code than throwing completion handlers in everywhere.
The basic pattern to achieve thread safety is to never mutate/access the same property from multiple threads at the same time. The simplest solution is to just never let any background queue interact with your property directly. So, create a local variable that the background queue will use, and then dispatch the updating of the property to the main queue.
Personally, I wouldn't have setup interact with myDict at all, but rather return the result via the completion handler, e.g.
// properties
var myDict = ...
private let queue = DispatchQueue(label: "my-queue", qos: .utility) // some background queue on which we'll recalculate what will eventually be used to update `myProperty`
// method doesn't reference `myDict` at all, but uses local var only
func setup(completion: #escaping (Foo) -> Void) {
queue.async {
var results = ... // some local variable that we'll use as we're building up our results
// do time-consuming population of `results` here;
// do not touch `myDict` here, though;
// when all done, dispatch update of `myDict` back to the main queue
DispatchQueue.main.async { // dispatch update of property back to the main queue
completion(results)
}
}
}
Then the routine that calls setup can update the property (and trigger necessary UI update, too).
setup { results in
self.myDict = results
// also trigger UI update here, too
}
(Note, your closure parameter type (Foo in my example) would be whatever type myDict is. Maybe a typealias as advised elsewhere, or better, use custom types rather than dictionary within dictionary within dictionary. Use whatever type you’d prefer.)
By the way, your question’s title and preamble talks about TSAN and thread safety, but you then share a “unrecognized selector” exception, which is a completely different issue. So, you may well have two completely separate issues going on. A TSAN data race error would have produced a very different message. (Something like the error I show here.) Now, if setup is mutating myDict from a background thread, that undoubtedly will lead to thread-safety problems, but your reported exception suggests there might also be some other problem, too...

Safety of using an empty reference instance across multiple threads

Background
I have a class Data that stores multiple input parameters and a single output value.
The output value is recalculated whenever one of the input parameters is mutated.
The calculation takes a non-trivial amount of time so it is performed asynchronously.
If one of the input parameters changes during recalculation, the current calculation is cancelled, and a new one is begun.
The cancellation logic is implemented via a serialized queue of calculation operations and a key (reference instance) (Data.key). Data.key is set to a new reference instance every time a new recalculation is added to the queue. Also only a single recalculation can occur at a time — due to the queue. Any executing recalculation constantly checks if it was the most recently initiated calculation by holding a reference to both the key that what was created with it when it was initiated and the currently existing key. If they are different, then a new recalculation has been queued since it began, and it will terminate.
This will trigger the next recalculation in the queue to begin, repeating the process.
The basis for my question
The reassignment of Data.key is done on the main thread.
The current calculation constantly checks to see if its key is the same as the current one. This means another thread is constantly accessing Data.key.
Question(s)
Is it safe for me to leave Data.key vulnerable to being read/written to at the same time?
Is it even possible for a property to be read and written to simultaneously?
Yes Data.Key vulnerable to being read/written to at the same time.
Here is example were i'm write key from main thread and read from MySerialQueue.
If you run that code, sometimes it would crash.
Crash happens because of dereference of pointer that point to memory released during writing by main queue.
Xcode have feature called ThreadSanitizer, it would help to catch such problems.
Discussion About Race condition
func experiment() {
var key = MyClass()
var key2 = MyClass()
class MyClass {}
func writer() {
for _ in 0..<1000000 {
key = MyClass()
}
}
func reader() {
for _ in 0..<1000000 {
if key === key2 {}
}
}
DispatchQueue.init(label: "MySerialQueue").async {
print("reader begin")
reader()
print("reader end")
}
DispatchQueue.main.async {
print("writer begin")
writer()
print("writer end")
}
}
Q:
Is it safe for me to leave Data.key vulnerable to being read/written to at the same time?
A:
No
Q:
Is it even possible for a property to be read and written to simultaneously?
A:
Yes, create a separate queue for the Data.Key that only through which you access it. As long as any operation (get/set) is restricted within this queue you can read or write from anywhere with thread safety.

Swift - Is setting variable property concurrency or multithreading safe?

As I know setting a variable property when using concurrency or multithreading is not safe but I can't produce a crash with below code.
class Node {
var data = 0
}
var node = Node()
let concurrentQueue = DispatchQueue(label: "queue", attributes: .concurrent)
for i in 0...1000 {
concurrentQueue.async {
node.data = i // Should get crash at this line
}
}
UPDATE1
Thanks #MartinR for pointing out in his comment.
Enable the “Thread Sanitizer” and it'll report an error immediately.
UPDATE2
The code got EXC_BAD_ACCESS KERN_INVALID_ADDRESS crash if changing data to reference type. It doesn't always happen but sometimes it will. For example:
class Data {}
class Node {
var data = Data() // Use reference type instead of value type
}
var node = Node()
let concurrentQueue = DispatchQueue(label: "queue", attributes: .concurrent)
for i in 0...1000 {
concurrentQueue.async {
node.data = Data() // EXC_BAD_ACCESS KERN_INVALID_ADDRESS
}
}
This behavior also happens in Objective-C. Setting object property concurrently will cause crash. But with primitive type, the crash will not happen.
Questions
Does setting value type property concurrently will produce a crash?
If it doesn't produce a crash, what is the difference between setting value type property and setting reference type property?
It's perfect if anyone can also explain why setting reference type property concurrently will produce a crash.
First off
Class value are stored in heap memory while struct/enum value are stored in stack memory and compiler will try to allocate those memory at compile time (according to my first ref and many online answer). You can check using this code:
class MemTest {}
class Node {
var data = MemTest()
}
let node = Node()
let concurrentQueue = DispatchQueue(label: "queue", attributes: .concurrent)
for index in 0...100000 {
concurrentQueue.async {
node.data = MemTest()
withUnsafePointer(to: &node.data) {
print("Node data # \($0)")
}
withUnsafePointer(to: node.data) {
print("Node data value no. \(index) # \($0)")
}
}
How to: run 2 time and check memory address for value changed time 500, switch MemTest between class and struct will show the difference. Struct will show the same while class will show different address between each time.
So changing value type is just like changing address but the the memory blocks will not be restored while changing reference type is not just changing address but also restore and allocate new memory blocks which will cause the program to break.
Secondly
But if running first code block of #trungduc with withUnsafePointer, it will show us that the index var of for loop is allocated on the go and in the heap memory, so why is that?
As mentioned before, compiler will only try to allocate the mem if the value type is calculable at compile time. If the they are not calculable, the value will be allocated in heap memory and stay there till the end of scope (according to my second ref). So may be the explanation here is the system will restored the allocated stack after everything is done - end of scope (This I'm not very sure). So in this case the code will not produce a crash as we know.
My conclusion, the reference type variable's mem will be allocated and restored with no restriction in this case whereas value type variable's mem will be allocated and removed only after the system enter and exit a the scope which contains said variable
Thanks
#Gokhan Topcu for Check section "Memory Management"
#Bruno Rocha for Check section "Heap Allocated Value Types"
Some words
My answer is not very solid and might have lots of grammar and spelling error. All update are appreciated. Thanks in advance
Update
For the part I'm not very sure:
variable index was copied to a new memory address with operator = so it doesn't matter where the scope end, stack will be released after for loop
After some digging, in #trungduc's code, with reference type variable, it will do 3 things:
Allocate new memory for class Data
Reduce reference to old Data stored in node.data, even free old Data if it's no longer referenced
Point node.data to new Data
While for value type it will do 1 thing only:
Point node.data to Integer in stack memory
The major difference is in step 2 where there is a chance the old Data memory is restored
There are possibilities where this scenario will happen with reference type
________Task 1________|________Task 2________
Allocate new Data #1 |
|Allocate new Data #2
Load pointer to old |
Data |
Reduce reference count|
to old Data |
|Load pointer to old
|Data
Free old Data |
|Reduce reference count
|to old Data (!)
|Free old Data (!)
Reference new Data #1 |
|Reference new Data #2
while with value type, this will happen
________Task 1________|________Task 2________
Reference to Integer 1|
|Reference to Integer 2
In the first case we will have various alternative scenarios but in most case, we get a segmentation fault because thread 2 tries to dereference that pointer after thread 1 free it. There might be other issues like memory leaking as we notice, thread 2 might not reduce reference count to Data #1 correctly
Whereas in second case, it's just changing the pointer.
Note
In second case, it will never cause crash on Intel CPU but not guaranteed on other CPUs as well because many CPUs do not promise that doing this will not cause a crash.
Non-atomic doesn't mean that app will crash if multiple threads are using the shared resource.
Atomic Properties
Defining a property as atomic will guarantee that a valid value will be returned. Notice that valid does not always mean correct.
This also does not mean that atomic properties are thread safe. Different threads can attempt to write and read a the same time. One of two values will be returned — the value before the change or the value of the change
Non-Atomic Properties
Non atomic properties has no guarantee regarding the returned value. It can be the correct value, a partially written value or even some garbage value.
It simply means that the final value will not be consistent. You won't know which thread will update the value last.
You can refer the link for more clarification on this.

Realm in AsyncDisplayKit causes Termination - realm::IncorrectThreadException

I'm using RealmSwift with AsyncDisplayKit, I'm getting this error all the time from ASDataController.mm:
libc++abi.dylib: terminating with uncaught exception of type realm::IncorrectThreadException: Realm accessed from incorrect thread.
I have a DataSourceManager class that contains the data, and a DatabaseManager that handles the fetch and insert operations.
Exception always occurs in _layoutNodesFromContexts:ofKind:completion:.
I've tried any combination of GCD that I knew (Serial, Concurrent, Barrier), but I couldn't handle this exception.
How should I manage this situation?
Thanks!
I've tried Unmanaged_RLMObject as workaround. Unmanaged_RLMObject is the RLMObject haven't add to RLMRealm.
It works, but I don't think it's good solution.
Unmanaged instances of RLMObjects behave exactly as regular NSObject
subclasses, and are safe to pass across threads.
Source
This is probably because AsyncDisplayKit (or Texture now) works on multiple background threads, and your realm objects are being passed around between threads. That's why the IncorrectThreadException.
To pass your realm objects between threads, use the ThreadSafeReference, along with using realm.resolve where you access your objects in AsyncDisplayKit.
More info here.
The quick and easy solution I have found is instead of accessing your data Model direct in they layoutSpecThatFits methods which are called in the background simply declare a parameter needed from the model and set it in your init method. Then use it in layoutSpecThatFits as usual.
For example:
Assume your data model is Person
class Person: Object {
#objc dynamic var name: String = ""
#objc dynamic var birthday: Date = Date()
}
In your node (CellNode, DisplayNode etc) on layoutSpecThatFit method don't access person direct instead have a property say name which you set it in init method, then use it like so: -
var name: String
init(person: Person){
// Set the property here so that you don't have to call person.name in layoutSpect method.
self.name = person.name
super.init()
}
override func layoutSpecThatFits(_ constrainedSize: ASSizeRange) -> ASLayoutSpec {
// Now you can safely use the param here on a different thread without issues.
if (self.name) {
// ---
}
}
Reference: I found the idea from this article

Why is weak_table_t a member of SideTable in Objective-C runtime?

I am reading code of objc from https://github.com/opensource-apple/objc4.
In the code, there is a struct SideTable, which contains reference count of corresponding object and a weak_table_t.
struct SideTable {
spinlock_t slock;
RefcountMap refcnts;
weak_table_t weak_table;
SideTable() {
memset(&weak_table, 0, sizeof(weak_table));
}
~SideTable() {
_objc_fatal("Do not delete SideTable.");
}
void lock() { slock.lock(); }
void unlock() { slock.unlock(); }
bool trylock() { return slock.trylock(); }
// Address-ordered lock discipline for a pair of side tables.
template<bool HaveOld, bool HaveNew>
static void lockTwo(SideTable *lock1, SideTable *lock2);
template<bool HaveOld, bool HaveNew>
static void unlockTwo(SideTable *lock1, SideTable *lock2);
};
And the SideTable of an object can be retrieved by SideTables()[obj] as the SideTable of every object is stored in a StripedMap, which is actually an array using the hash value of an object's address as index.
But according to the code of weak_entry_for_referent, the runtime gets the weak_entry_t of a referent through checking weak_table->weak_entries[index].referent.
static weak_entry_t *
weak_entry_for_referent(weak_table_t *weak_table, objc_object *referent)
{
assert(referent);
weak_entry_t *weak_entries = weak_table->weak_entries;
if (!weak_entries) return nil;
size_t index = hash_pointer(referent) & weak_table->mask;
size_t hash_displacement = 0;
while (weak_table->weak_entries[index].referent != referent) {
index = (index+1) & weak_table->mask;
hash_displacement++;
if (hash_displacement > weak_table->max_hash_displacement) {
return nil;
}
}
return &weak_table->weak_entries[index];
}
It means the weak_table contains more than the weak entries for a single object. Then why is weak_table_t a member of SideTable instead of a global data?
As I can't find code which really initialize SideTable of object (storeStrong just use the SideTable without initializing it at first) and weak_table, I can't quite understand how things work in the background.
Can anybody give me a hint?
why is weak_table_t a member of SideTable
There are two cases should be solved if use a global weak_table_t.(refcnts has the same cases)
case 1: Maintaining the weak_table_t should be thread safe, so we need lock
case 2: lock means slow, but the developer want the system run as fast as possible
Only one global weak_table_t can't solved the two cases above.
Actuactly, class StripedMap solves the two cases by using lock striping, by wrapping weak_table_t and refcnts together inside SideTable.
Let's take a look at the code below, copied from objc-private.h.
// StripedMap<T> is a map of void* -> T, sized appropriately
// for cache-friendly lock striping.
// For example, this may be used as StripedMap<spinlock_t>
// or as StripedMap<SomeStruct> where SomeStruct stores a spin lock.
template<typename T>
class StripedMap {
// ... code for StripedMap
PaddedT array[StripeCount]; // There are 8 SideTables if define TARGET_OS_IPHONE
// ... code for StripedMap
}
8 SideTables store 8 weak_table_t and 8 spinlock_t slock. The system can maintain 8 weak_table_t cocurrently at most for 8 thread.
I think this is fast enought on a iOS device.
SideTable init
SideTablesMap.init(); called from arr_init().
You can use "Find Call Hierarchy" on init of class ExplicitInit to find the call hierarchy
The only reasonable reason I can figure out is:
The SideTableBuf for all SideTable instances is actually a bucket array. Different objects may be put in the same bucket. So a single SideTable may serve for different pointers according to the hash algorithm. And then, the weak_table actually contains weak_entry_t for different referents. That's why we need check the referent by:
while (weak_table->weak_entries[index].referent != referent)
And the weak_table serves for the current SideTable only, so it can't be a global data.
Weak table is a shared resource which allows access from multiple threads. Thus, we need a lock to avoid data inconsistency. So weak_table_t is wrapped in SideTable along with spinlock_t.
However, it's inefficient to have the whole table locked for each access. Considering the case, Thread A has acquired the lock, and is modifying the weak table. Meanwhile, Thread B wants to modify the weak table, so it tries to acquire the lock. However, only one thread can own the lock at a time. So Thread B blocks. If this happens all the time, access to weak table would be very slow.
Then developers came up with the pattern, "Lock Striping", dividing the table into multiple buckets, each of which can be locked independently. Upon that modifying bucket 1 doesn't block the modifying of bucket 2. So SideTable is wrapped in StripedMap for partition purpose.

Resources