I have a dataset with 5K (and 60 features) records focused on binary classification.
Please note that this solution doesn't work here
I am trying to generate feature importance using Permutation Feature Importance. However, I get the below error. Can you please look at my code and let me know whether I am making any mistake?
import eli5
from eli5.sklearn import PermutationImportance
logreg =LogisticRegression()
model = logreg.fit(X_train_std, y_train)
perm = PermutationImportance(model, random_state=1)
eli5.show_weights(perm, feature_names = X.columns.tolist())
I get an error like as shown below
AttributeError: 'PermutationImportance' object has no attribute 'feature_importances_'
Can you help me resolve this error?
If you look at your attributes of PermutationImportance object via
ord(perm)
you can see all attributes and methods BUT after you fit your PI object, meaning that you need to do:
perm = PermutationImportance(model, random_state=1).fit(X_train,y)
Related
I'm using pytorch geometric. My data is of the class: torch_geometric.data.Data. Most tutorials I see use torch_geometric.utils.train_test_split_edges (depreciated now, recommended to use torch_geometric.transforms.random_link_split. Any way, both of these functions work to split my data. However, my data has a time component and I'd like to do a train/test split using a date as a threshold. How can I accomplish this?
My data object looks like:
Data(x=[17815, 13], edge_index=[2, 62393], edge_attr=[62393], edge_time=[62393], edge_label=[62393], input_id=[1], batch_size=1)
I can get my own train_mask and test_mask by doing something like:
train_mask = (data.edge_time < time_threshold)
test_mask = (data.edge_time >= time_threshold)
But again this would take some work to filter all the components of Data and it does not have negative edge indices. My model needs positive and negative edge indices just like torch_geometric.utils.train_test_split_edges returns.
Does anyone know how to accomplish this? Thanks so much!!
You can in theory simply use the node mask to generate a train and test edge_index tensor:
edge_index_train = data.edge_index[:, train_mask]
edge_attr_train = data.edge_index[train_mask]
and respectively replace train_mask with ~train_mask (or test_mask) for the test dataset.
I would like to take advantage of Fable's ability to back transform results for a regression. Unfortunately, I have been unable to do so using a VAR model in Fable. I have tried several options such as:
fit <- model_data_ts %>%
model(
aicc = VAR(vars(log(IC, E_U))),
bic = VAR(vars(log(IC, E_U)), ic = "bic")
)
The above code is not back transformed in the results. I can just do this manually, but wanted to understand what is not working.
The transformation will need to apply to each response variable separately.
In your example, to log() both response variables you would use:
fit <- model_data_ts %>%
model(
aicc = VAR(vars(log(IC), log(E_U))),
bic = VAR(vars(log(IC), log(E_U)), ic = "bic")
)
Note that transformations on multivariate models is only partially supported at this stage, and things like forecasting with them is not yet implemented.
Also please provide an example dataset in future to make it easier to understand your question and check that the solution works.
I have a ML.net project and as of right now everything has gone great. I have a motor that collects a power reading 256 times around each rotation and I push that into a model. Right now it determines the state of the motor nearly perfectly. The motor itself only has room for 38 values on it at a time so I have been spending several rotations to collect the full 256 samples for my training data.
I would like to cut the sample size down to 38 so every rotation I can determine its state. If I just evenly space the samples down to 38 my model degrades by a lot. I know I am not feeding the model the features it thinks are most important but just making a guess and randomly selecting data for the model.
Is there a way I can see the importance of each value in the array during the training process? I was thinking I could use IDataView for this and I found the below statement about it (link).
Standard ML schema: The IDataView system does not define, nor prescribe, standard ML schema representation. For example, it does not dictate representation of nor distinction between different semantic interpretations of columns, such as label, feature, score, weight, etc. However, the column metadata support, together with conventions, may be used to represent such interpretations.
Does this mean I can print out such things as weight for each column and how would I do that?
I have actually only been working with ML.net for a couple weeks now so I apologize if the question is naive, I assure you I have googled this as many ways as I can think to. Any advice would be appreciated. Thanks in advance.
EDIT:
Thank you for the answer I was going down a completely useless path. I have been trying to get it to work following the example you linked to. I have 260 columns with numbers and one column with the conditions as one of five text strings. This is the condition I am trying to predict.
The first time I tried it threw an error "expecting single but got string". No problem I used .Append(mlContext.Transforms.Conversion.MapValueToKey("Label", "Label")) to convert to key values and it threw the error expected Single, got Key UInt32. any ideas on how to push that into this function?
At any rate thank you for the reply but I guess my upvotes don't count yet sorry. hopefully I can upvote it later or someone else here can upvote it. Below is the code example.
//Create MLContext
MLContext mlContext = new MLContext();
//Load Data
IDataView data = mlContext.Data.LoadFromTextFile<ModelInput>(TRAIN_DATA_FILEPATH, separatorChar: ',', hasHeader: true);
// 1. Get the column name of input features.
string[] featureColumnNames =
data.Schema
.Select(column => column.Name)
.Where(columnName => columnName != "Label").ToArray();
// 2. Define estimator with data pre-processing steps
IEstimator<ITransformer> dataPrepEstimator =
mlContext.Transforms.Concatenate("Features", featureColumnNames)
.Append(mlContext.Transforms.NormalizeMinMax("Features"))
.Append(mlContext.Transforms.Conversion.MapValueToKey("Label", "Label"));
// 3. Create transformer using the data pre-processing estimator
ITransformer dataPrepTransformer = dataPrepEstimator.Fit(data);//error here
// 4. Pre-process the training data
IDataView preprocessedTrainData = dataPrepTransformer.Transform(data);
// 5. Define Stochastic Dual Coordinate Ascent machine learning estimator
var sdcaEstimator = mlContext.Regression.Trainers.Sdca();
// 6. Train machine learning model
var sdcaModel = sdcaEstimator.Fit(preprocessedTrainData);
ImmutableArray<RegressionMetricsStatistics> permutationFeatureImportance =
mlContext
.Regression
.PermutationFeatureImportance(sdcaModel, preprocessedTrainData, permutationCount: 3);
// Order features by importance
var featureImportanceMetrics =
permutationFeatureImportance
.Select((metric, index) => new { index, metric.RSquared })
.OrderByDescending(myFeatures => Math.Abs(myFeatures.RSquared.Mean));
Console.WriteLine("Feature\tPFI");
foreach (var feature in featureImportanceMetrics)
{
Console.WriteLine($"{featureColumnNames[feature.index],-20}|\t{feature.RSquared.Mean:F6}");
}
I believe what you are looking for is called Permutation Feature Importance. This will tell you which features are most important by changing each feature in isolation, and then measuring how much that change affected the model's performance metrics. You can use this to see which features are the most important to the model.
Interpret model predictions using Permutation Feature Importance is the doc that describes how to use this API in ML.NET.
You can also use an open-source set of packages, they are much more sophisticated than what is found in ML.NET. I have an example on my GitHub how-to use R with advanced explainer packages to explain ML.NET models. You can get local instance as well as global model breakdown/details/diagnostics/feature interactions etc.
https://github.com/bartczernicki/BaseballHOFPredictionWithMlrAndDALEX
I've been trying to generate human pose estimations, I came across many pretrained models (ex. Pose2Seg, deep-high-resolution-net ), however these models only include scripts for training and testing, this seems to be the norm in code written to implement models from research papers ,in deep-high-resolution-net I have tried to write a script to load the pretrained model and feed it my images, but the output I got was a bunch of tensors and I have no idea how to convert them to the .json annotations that I need.
total newbie here, sorry for my poor English in advance, ANY tips are appreciated.
I would include my script but its over 100 lines.
PS: is it polite to contact the authors and ask them if they can help?
because it seems a little distasteful.
Im not doing skeleton detection research, but your problem seems to be general.
(1) I dont think other people should teaching you from begining on how to load data and run their code from begining.
(2) For running other peoples code, just modify their test script which is provided e.g
https://github.com/leoxiaobin/deep-high-resolution-net.pytorch/blob/master/tools/test.py
They already helps you loaded the model
model = eval('models.'+cfg.MODEL.NAME+'.get_pose_net')(
cfg, is_train=False
)
if cfg.TEST.MODEL_FILE:
logger.info('=> loading model from {}'.format(cfg.TEST.MODEL_FILE))
model.load_state_dict(torch.load(cfg.TEST.MODEL_FILE), strict=False)
else:
model_state_file = os.path.join(
final_output_dir, 'final_state.pth'
)
logger.info('=> loading model from {}'.format(model_state_file))
model.load_state_dict(torch.load(model_state_file))
model = torch.nn.DataParallel(model, device_ids=cfg.GPUS).cuda()
Just call
# evaluate on Variable x with testing data
y = model(x)
# access Variable's tensor, copy back to CPU, convert to numpy
arr = y.data.cpu().numpy()
# write CSV
np.savetxt('output.csv', arr)
You should be able to open it in excel
(3) "convert them to the .json annotations that I need".
That's the problem nobody can help. We don't know what format you want. For their format, it can be obtained either by their paper. Or looking at their training data by
X, y = torch.load('some_training_set_with_labels.pt')
By correlating the x and y. Then you should have a pretty good idea.
I'm trying to build a service that has 2 components. In component 1, I train a machine learning model using sklearn by creating a Pipeline. This model gets serialized using joblib.dump (really numpy_pickle.dump). Component 2 runs in the cloud, loads the model trained by (1), and uses it to label text that it gets as input.
I'm running into an issue where, during training (component 1) I need to first binarize my data since it is text data, which means that the model is trained on binarized input and then makes predictions using the mapping created by the binarizer. I need to get this mapping back when (2) makes predictions based on the model so that I can output the actual text labels.
I tried adding the binarizer to the pipeline like this, thinking that the model would then have the mapping itself:
p = Pipeline([
('binarizer', MultiLabelBinarizer()),
('vect', CountVectorizer(min_df=min_df, ngram_range=ngram_range)),
('tfidf', TfidfTransformer()),
('clf', OneVsRestClassifier(clf))
])
But I get the following error:
model = p.fit(training_features, training_tags)
*** TypeError: fit_transform() takes 2 positional arguments but 3 were given
My goal is to make sure the binarizer and model are tied together so that the consumer knows how to decode the model's output.
What are some existing paradigms for doing this? Should I be serializing the binarizer together with the model in some other object that I create? Is there some other way of passing the binarizer to Pipeline so that I don't have to do that, and would I be able to get the mappings back from the model if I did that?
Your intuition that you should add the MultiLabelBinarizer to the pipeline was the right way to solve this problem. It would have worked, except that MultiLabelBinarizer.fit_transform does not take the fit_transform(self, X, y=None) method signature which is now standard for sklearn estimators. Instead, it has a unique fit_transform(self, y) signature which I had never noticed before. As a result of this difference, when you call fit on the pipeline, it tries to pass training_tags as a third positional argument to a function with two positional arguments, which doesn't work.
The solution to this problem is tricky. The cleanest way I can think of to work around it is to create your own MultiLabelBinarizer that overrides fit_transform and ignores its third argument. Try something like the following.
class MyMLB(MultiLabelBinarizer):
def fit_transform(self, X, y=None):
return super(MultiLabelBinarizer, self).fit_transform(X)
Try adding this to your pipeline in place of the MultiLabelBinarizer and see what happens. If you're able to fit() the pipeline, the last problem that you'll have is that your new MyMLB class has to be importable on any system that will de-pickle your now trained, pickled pipeline object. The easiest way to do this is to put MyMLB into its own module and place a copy on the remote machine that will be de-pickling and executing the model. That should fix it.
I misunderstood how the MultiLabelBinarizer worked. It is a transformer of outputs, not of inputs. Not only does this explain the alternative fit_transform() method signature for that class, but it also makes it fundamentally incompatible with the idea of inclusion in a single classification pipeline which is limited to transforming inputs and making predictions of outputs. However, all is not lost!
Based on your question, you're already comfortable with serializing your model to disk as [some form of] a .pkl file. You should be able to also serialize a trained MultiLabelBinarizer, and then unpack it and use it to unpack the outputs from your pipeline. I know you're using joblib, but I'll write this up this sample code as if you're using pickle. I believe the idea will still apply.
X = <training_data>
y = <training_labels>
# Perform multi-label classification on class labels.
mlb = MultiLabelBinarizer()
multilabel_y = mlb.fit_transform(y)
p = Pipeline([
('vect', CountVectorizer(min_df=min_df, ngram_range=ngram_range)),
('tfidf', TfidfTransformer()),
('clf', OneVsRestClassifier(clf))
])
# Use multilabel classes to fit the pipeline.
p.fit(X, multilabel_y)
# Serialize both the pipeline and binarizer to disk.
with open('my_sklearn_objects.pkl', 'wb') as f:
pickle.dump((mlb, p), f)
Then, after shipping the .pkl files to the remote box...
# Hydrate the serialized objects.
with open('my_sklearn_objects.pkl', 'rb') as f:
mlb, p = pickle.load(f)
X = <input data> # Get your input data from somewhere.
# Predict the classes using the pipeline
mlb_predictions = p.predict(X)
# Turn those classes into labels using the binarizer.
classes = mlb.inverse_transform(mlb_predictions)
# Do something with predicted classes.
<...>
Is this the paradigm for doing this? As far as I know, yes. Not only that, but if you desire to keep them together (which is a good idea, I think) you can serialize them as a tuple as I did in the example above so they stay in a single file. No need to serialize a custom object or anything like that.
Model serialization via pickle et al. is the sklearn approved way to save estimators between runs and move them between computers. I've used this process successfully many times before, including in productions systems with success.