Access previous value of a vector in sapply - sapply

I wish to write an sapply version of the following code. As you can see the for code replaces the value at position i with a mean of the values at positions i-1 and i+1. How do i do this with an sapply?
test <- c(1:length(x))
if(length(which(x > mean(x) + sd(x)*3)) > 0){
for (i in 1:length(x)) {
if(x[i] > mean(x) + sd(x)*3){
x[i] <- mean(x[i-1], x[i+1])
}
else{
x[i] <- x[i]
}
}
}
else{
test <- x
}
In order to generate a suitable (i.e., non-normal) test vector, I use the rstable function from the StableEstim package.
x <- rstable(100, alpha = 1.48, beta = 0.99, gamma = 0.27, delta = 3.36)

Not sure if this will help anyone else but I found a way to make my code less computationally intensive without using sapply:
spiker <- function(x){
l <- c(which(x > mean(x) + sd(x)*3), which(x < mean(x) - sd(x)*3))
if(length(l) > 0){
for (i in l) {
x[i] <- mean(x[i-1], x[i+1])
}
x <- x
spiker(x)
}
else{
x <<- x
}
}
The only issue with this is if the first or last element in the vector x meets the 3 sd criteria, then the mean will not be computed.

Related

Dafny: property '2*x*y <= x^2+y^2' holds with primitive operations (like 'x*x'), but not when I define operations in my own (like 'power(x,2)')

I am trying to prove a property in Dafny, which makes use of powers.
Concretely, this one: forall x,y in Reals : 2xy <= x^2+y^2. I implemented this idea in the following lemma:
lemma product2_lessEqual_powProduct (x:real, y:real)
requires 0.0<x<=1.0 && 0.0<y<=1.0
ensures 2.0*x*y <= (x*x)+(y*y)
{}
Which is verified with no problem (I guess some automatic induction is performed below).
However, I would like to use an own power function in order to make power(x,2) instead of x*x. Thus, I took a power function from https://github.com/bor0/dafny-tutorial/blob/master/pow.dfy, which is as follows:
function method power(A:int, N:nat):int
{
if (N==0) then 1 else A * power(A,N-1)
}
method pow(A:int, N:int) returns (x:int)
requires N >= 0
ensures x == power(A, N)
{
x := 1;
var i := N;
while i != 0
invariant x == power(A, (N-i))
{
x := x * A;
i := i - 1;
}
}
However, since I am using real values for the basis of the exponential, I modified it a bit so that it works for exponentials:
function method power(A:real, N:nat):real
{
if (N==0) then 1.0 else A * power(A,N-1)
}
method pow(A:real, N:int) returns (x:real)
requires N >= 0
ensures x == power(A, N)
{
x := 1.0;
var i := N;
while i != 0
invariant x == power(A, (N-i))
{
x := x * A;
i := i - 1;
}
}
Thus, I wanted to test it with the previous lemma:
lemma product2_lessEqual_powProduct (x:real, y:real)
requires 0.0<x<=1.0 && 0.0<y<=1.0
ensures 2.0*x*y <= power(x,2)+power(y,2)
{}
Surprisingly, it tells me the typical A postcondition might not hold on this return path.Verifier.
Can anyone explain why this happens? Why is it verifying with primitive operations of Dafny, but not when I define them functions? And how could I prove this lemma now?
Even though second parameter of power is concrete and small, Dafny is not doing enough unrolling to prove desired fact. Adding {:fuel 2} to power makes proof go through. You can read more about fuel here https://dafny.org/dafny/DafnyRef/DafnyRef.html#sec-fuel
function method {:fuel 2} power(A:real, N:nat):real
{
if (N==0) then 1.0 else A * power(A,N-1)
}
method pow(A:real, N:int) returns (x:real)
requires N >= 0
ensures x == power(A, N)
{
x := 1.0;
var i := N;
while i != 0
invariant x == power(A, (N-i))
{
x := x * A;
i := i - 1;
}
}
lemma product2_lessEqual_powProduct (x:real, y:real)
requires 0.0<x<=1.0 && 0.0<y<=1.0
ensures 2.0*x*y <= power(x,2)+power(y,2)
{}
It's surprising until you realize that there is a mathematical theory for A*A, but power(A, 2) requires two unfolding of power to have a meaning.
If you want your function to work seamlessly with the theory and prove your last lemma, you can give it precise postconditions:
function method power(A:real, N:nat): (result: real)
ensures N == 1 ==> result == A
ensures N == 2 ==> result == A*A
{
if (N==0) then 1.0 else A * power(A,N-1)
}
I tested it, your second lemma verifies.

Max and Min of a set of variables in z3py

I have a problem where I want to limit the range of a real variable between the maximum and minimum value of another set of real variables.
s = Solver()
y = Real('y')
Z = RealVector('z', 10)
s.add(And(y >= min(Z), y <= max(Z)))
Is there a way to do this in z3py?
You can use Axel's solution; though that one requires you to create an extra variable and also asserts more constraints than needed. Moreover, it doesn't let you use min and max as simple functions. It might be easier to just program this in a functional way, like this:
# Return minimum of a vector; error if empty
def min(vs):
m = vs[0]
for v in vs[1:]:
m = If(v < m, v, m)
return m
# Return maximum of a vector; error if empty
def max(vs):
m = vs[0]
for v in vs[1:]:
m = If(v > m, v, m)
return m
Another difference is that in the functional style we throw an error if the vector is empty. In the other style, the result will essentially be unconstrained. (i.e., min/max can take any value.) You should consider which semantics is right for your application, in case the vector you're passing might be empty. (At the least, you should change it so it prints out a nicer error message. Currently it'll throw an IndexError: list index out of range error if given an empty vector.)
Now you can say:
s = Solver()
y = Real('y')
Z = RealVector('z', 10)
s.add(And(y >= min(Z), y <= max(Z)))
print (s.check())
print (s.model())
This prints:
sat
[z__7 = -1,
z__0 = -7/2,
z__4 = -5/2,
z__5 = -2,
z__3 = -9/2,
z__2 = -4,
z__8 = -1/2,
y = 0,
z__9 = 0,
z__6 = -3/2,
z__1 = -3]
You could benefit from Hakan Kjellerstrand's collection of useful z3py definitions:
from z3 import *
# Functions written by Hakan Kjellerstrand
# http://hakank.org/z3/
# The following can be used by importing http://www.hakank.org/z3/z3_utils_hakank.py
# v is the maximum value of x
def maximum(sol, v, x):
sol.add(Or([v == x[i] for i in range(len(x))])) # v is an element in x)
for i in range(len(x)):
sol.add(v >= x[i]) # and it's the greatest
# v is the minimum value of x
def minimum(sol, v, x):
sol.add(Or([v == x[i] for i in range(len(x))])) # v is an element in x)
for i in range(len(x)):
sol.add(v <= x[i]) # and it's the smallest
s = Solver()
y = Real('y')
zMin = Real('zMin')
zMax = Real('zMax')
Z = RealVector('z', 10)
maximum(s, zMin, Z)
minimum(s, zMax, Z)
s.add(And(y >= zMin, y <= zMax))
print(s.check())
print(s.model())

How can I optimize my code for better execution times

I'm implementing an image processing algorithm called BM3D and I've already achieved the outcome which is denoising a grayscale image but the thing is that it is too slow, even with a 436 by 436 gray image.
I have already tried to find way to maybe fasten up the work that I do with array and lists, but didn't get much improvement
val img = imread("files/image.png", 0)
val img3= Mat(img.rows(),img.cols(),img.type())
val listaBlocos = mutableListOf(Pair(0.0, Pair(0,0)))
val tamanhoBloco = 3 //Block Size
val tamanhoJanela = 9 //Window Size
val mediaPorBloco = DoubleArray(16)
var sum = 0.0
listaBlocos.clear()
val stats_file = File("files/tempos436x436.txt")
val test = 10
for (x in 0 until test){
val timeelapsed = measureTimeMillis {
for (col in 20 ..img.width() - 20) {
for (row in 20 ..img.height() - 20) {
val block1 = generateBlock(img, row, col, tamanhoBloco)
for (c in -tamanhoJanela..tamanhoJanela) {
for (l in -tamanhoJanela..tamanhoJanela) {
val block2 = generateBlock(img, row + l, col + c, tamanhoBloco)
val d = distBlock(block1, block2)
val par = Pair(d, Pair(row + l, col + c))
listaBlocos.add(par)
}
}
val listaBlocosOrdenada = listaBlocos.sortedWith(compareBy { it.first })
listaBlocos.clear()
for (k in 0..15) {
sum = 0.0
val c2 = listaBlocosOrdenada[k].second.second
val l2 = listaBlocosOrdenada[k].second.first
for (c in 0..tamanhoBloco - 1) {
for (l in 0..tamanhoBloco - 1) {
sum += img.get(l2 - l, c2 - c)[0]
}
}
mediaPorBloco[k] = sum / 4
}
val v = mediaPorBloco.average()
img3.put(row,col,v)
}
}
}
imwrite("files/resultado.png", img3)
stats_file.appendText("teste$x 100X200 $timeelapsed\n")
}
well the result in the actual image denoising is good but is takes maybe 15 min to denoise a 436 x 436 image. I'm currently using a virtual machine with Ubuntu and 4 cores a 4 gbs of Ram

Why doesn't this Fibonacci Number function work in O(log N)?

So the Fibonacci number for log (N) — without matrices.
Ni // i-th Fibonacci number
= Ni-1 + Ni-2 // by definition
= (Ni-2 + Ni-3) + Ni-2 // unwrap Ni-1
= 2*Ni-2 + Ni-3 // reduce the equation
= 2*(Ni-3 + Ni-4) + Ni-3 //unwrap Ni-2
// And so on
= 3*Ni-3 + 2*Ni-4
= 5*Ni-4 + 3*Ni-5
= 8*Ni-5 + 5*Ni-6
= Nk*Ni-k + Nk-1*Ni-k-1
Now we write a recursive function, where at each step we take k~=I/2.
static long N(long i)
{
if (i < 2) return 1;
long k=i/2;
return N(k) * N(i - k) + N(k - 1) * N(i - k - 1);
}
Where is the fault?
You get a recursion formula for the effort: T(n) = 4T(n/2) + O(1). (disregarding the fact that the numbers get bigger, so the O(1) does not even hold). It's clear from this that T(n) is not in O(log(n)). Instead one gets by the master theorem T(n) is in O(n^2).
Btw, this is even slower than the trivial algorithm to calculate all Fibonacci numbers up to n.
The four N calls inside the function each have an argument of around i/2. So the length of the stack of N calls in total is roughly equal to log2N, but because each call generates four more, the bottom 'layer' of calls has 4^log2N = O(n2) Thus, the fault is that N calls itself four times. With only two calls, as in the conventional iterative method, it would be O(n). I don't know of any way to do this with only one call, which could be O(log n).
An O(n) version based on this formula would be:
static long N(long i) {
if (i<2) {
return 1;
}
long k = i/2;
long val1;
long val2;
val1 = N(k-1);
val2 = N(k);
if (i%2==0) {
return val2*val2+val1*val1;
}
return val2*(val2+val1)+val1*val2;
}
which makes 2 N calls per function, making it O(n).
public class fibonacci {
public static int count=0;
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);
int i = scan.nextInt();
System.out.println("value of i ="+ i);
int result = fun(i);
System.out.println("final result is " +result);
}
public static int fun(int i) {
count++;
System.out.println("fun is called and count is "+count);
if(i < 2) {
System.out.println("function returned");
return 1;
}
int k = i/2;
int part1 = fun(k);
int part2 = fun(i-k);
int part3 = fun(k-1);
int part4 = fun(i-k-1);
return ((part1*part2) + (part3*part4)); /*RESULT WILL BE SAME FOR BOTH METHODS*/
//return ((fun(k)*fun(i-k))+(fun(k-1)*fun(i-k-1)));
}
}
I tried to code to problem defined by you in java. What i observed is that complexity of above code is not completely O(N^2) but less than that.But as per conventions and standards the worst case complexity is O(N^2) including some other factors like computation(division,multiplication) and comparison time analysis.
The output of above code gives me information about how many times the function
fun(int i) computes and is being called.
OUTPUT
So including the time taken for comparison and division, multiplication operations, the worst case time complexity is O(N^2) not O(LogN).
Ok if we use Analysis of the recursive Fibonacci program technique.Then we end up getting a simple equation
T(N) = 4* T(N/2) + O(1)
where O(1) is some constant time.
So let's apply Master's method on this equation.
According to Master's method
T(n) = aT(n/b) + f(n) where a >= 1 and b > 1
There are following three cases:
If f(n) = Θ(nc) where c < Logba then T(n) = Θ(nLogba)
If f(n) = Θ(nc) where c = Logba then T(n) = Θ(ncLog n)
If f(n) = Θ(nc) where c > Logba then T(n) = Θ(f(n))
And in our equation a=4 , b=2 & c=0.
As case 1 c < logba => 0 < 2 (which is log base 2 and equals to 2) is satisfied
hence T(n) = O(n^2).
For more information about how master's algorithm works please visit: Analysis of Algorithms
Your idea is correct, and it will perform in O(log n) provided you don't compute the same formula
over and over again. The whole point of having N(k) * N(i-k) is to have (k = i - k) so you only have to compute one instead of two. But if you only call recursively, you are performing the computation twice.
What you need is called memoization. That is, store every value that you already have computed, and
if it comes up again, then you get it in O(1).
Here's an example
const int MAX = 10000;
// memoization array
int f[MAX] = {0};
// Return nth fibonacci number using memoization
int fib(int n) {
// Base case
if (n == 0)
return 0;
if (n == 1 || n == 2)
return (f[n] = 1);
// If fib(n) is already computed
if (f[n]) return f[n];
// (n & 1) is 1 iff n is odd
int k = n/2;
// Applying your formula
f[n] = fib(k) * fib(n - k) + fib(k - 1) * fib(n - k - 1);
return f[n];
}

How can I do mod without a mod operator?

This scripting language doesn't have a % or Mod(). I do have a Fix() that chops off the decimal part of a number. I only need positive results, so don't get too robust.
Will
// mod = a % b
c = Fix(a / b)
mod = a - b * c
do? I'm assuming you can at least divide here. All bets are off on negative numbers.
a mod n = a - (n * Fix(a/n))
For posterity, BrightScript now has a modulo operator, it looks like this:
c = a mod b
If someone arrives later, here are some more actual algorithms (with errors...read carefully)
https://eprint.iacr.org/2014/755.pdf
There are actually two main kind of reduction formulae: Barett and Montgomery. The paper from eprint repeat both in different versions (algorithms 1-3) and give an "improved" version in algorithm 4.
Overview
I give now an overview of the 4. algorithm:
1.) Compute "A*B" and Store the whole product in "C" that C and the modulus $p$ is the input for that algorithm.
2.) Compute the bit-length of $p$, say: the function "Width(p)" returns exactly that value.
3.) Split the input $C$ into N "blocks" of size "Width(p)" and store each in G. Start in G[0] = lsb(p) and end in G[N-1] = msb(p). (The description is really faulty of the paper)
4.) Start the while loop:
Set N=N-1 (to reach the last element)
precompute $b:=2^{Width(p)} \bmod p$
while N>0 do:
T = G[N]
for(i=0; i<Width(p); i++) do: //Note: that counter doesn't matter, it limits the loop)
T = T << 1 //leftshift by 1 bit
while is_set( bit( T, Width(p) ) ) do // (N+1)-th bit of T is 1
unset( bit( T, Width(p) ) ) // unset the (N+1)-th bit of T (==0)
T += b
endwhile
endfor
G[N-1] += T
while is_set( bit( G[N-1], Width(p) ) ) do
unset( bit( G[N-1], Width(p) ) )
G[N-1] += b
endwhile
N -= 1
endwhile
That does alot. Not we only need to recursivly reduce G[0]:
while G[0] > p do
G[0] -= p
endwhile
return G[0]// = C mod p
The other three algorithms are well defined, but this lacks some information or present it really wrong. But it works for any size ;)
What language is it?
A basic algorithm might be:
hold the modulo in a variable (modulo);
hold the target number in a variable (target);
initialize modulus variable;
while (target > 0) {
if (target > modulo) {
target -= modulo;
}
else if(target < modulo) {
modulus = target;
break;
}
}
This may not work for you performance-wise, but:
while (num >= mod_limit)
num = num - mod_limit
In javascript:
function modulo(num1, num2) {
if (num2 === 0 || isNaN(num1) || isNaN(num2)) {
return NaN;
}
if (num1 === 0) {
return 0;
}
var remainderIsPositive = num1 >= 0;
num1 = Math.abs(num1);
num2 = Math.abs(num2);
while (num1 >= num2) {
num1 -= num2
}
return remainderIsPositive ? num1 : 0 - num1;
}

Resources