"Transactional safety" in influxDB - influxdb

We have a scenario where we want to frequently change the tag of a (single) measurement value.
Our goal is to create a database which is storing prognosis values. But it should never loose data and track changes to already written data, like changes or overwriting.
Our current plan is to have an additional field "write_ts", which indicates at which point in time the measurement value was inserted or changed, and a tag "version" which is updated with each change.
Furthermore the version '0' should always contain the latest value.
name: temperature
-----------------
time write_ts (val) current_mA (val) version (tag) machine (tag)
2015-10-21T19:28:08Z 1445506564 25 0 injection_molding_1
So let's assume I have an updated prognosis value for this example value.
So, I do:
SELECT curr_measurement
INSERT curr_measurement with new tag (version = 1)
DROP curr_mesurement
//then
INSERT new_measurement with version = 0
Now my question:
If I loose the connection in between for whatever reason in between the SELECT, INSERT, DROP:
I would get double records.
(Or if I do SELECT, DROP, INSERT: I loose data)
Is there any method to prevent that?

Transactions don't exist in InfluxDB
InfluxDB is a time-series database, not a relational database. Its main use case is not one where users are editing old data.
In a relational database that supports transactions, you are protecting yourself against UPDATE and similar operations. Data comes in, existing data gets changed, you need to reliably read these updates.
The main use case in time-series databases is a lot of raw data coming in, followed by some filtering or transforming to other measurements or databases. Picture a one-way data stream. In this scenario, there isn't much need for transactions, because old data isn't getting updated much.
How you can use InfluxDB
In cases like yours, where there is additional data being calculated based on live data, it's common to place this new data in its own measurement rather than as a new field in a "live data" measurement.
As for version tracking and reliably getting updates:
1) Does the version number tell you anything the write_ts number doesn't? Consider not using it, if it's simply a proxy for write_ts. If version only ever increases, it might be duplicating the info given by write_ts, minus the usefulness of knowing when the change was made. If version is expected to decrease from time to time, then it makes sense to keep it.
2) Similarly, if you're keeping old records: does write_ts tell you anything that the time value doesn't?
3) Logging. Do you need to over-write (update) values? Or can you get what you need by adding new lines, increasing write_ts or version as appropriate. The latter is a more "InfluxDB-ish" approach.
4) Reading values. You can read all values as they change with updates. If a client app only needs to know the latest value of something that's being updated (and the time it was updated), querying becomes something like:
SELECT LAST(write_ts), current_mA, machine FROM temperature
You could also try grouping the machine values together:
SELECT LAST(*) FROM temperature GROUP BY machine
So what happens instead of transactions?
In InfluxDB, inserting a point with the same tag keys and timestamp over-writes any existing data with the same field keys, and adds new field keys. So when duplicate entries are written, the last write "wins".
So instead of the traditional SELECT, UPDATE approach, it's more like SELECT A, then calculate on A, and put the results in B, possibly with a new timestamp INSERT B.
Personally, I've found InfluxDB excellent for its ability to accept streams of data from all directions, and its simple protocol and schema-free storage means that new data sources are almost trivial to add. But if my use case has old data being regularly updated, I use a relational database.
Hope that clear up the differences.

Related

Using EFFECTIVE_TS and EXPIRATION_TS on FACT tables

I have a requirement to create a Fact table which stores granted_share_qty awarded to employees. There are surrounding Dimensions like SPS Grant_dim which stores info about each grant, SPS Plan Dim which stores info about the Plan, SPS Client Dim which stores info about the Employer and SPS Customer Dim which stores info about the customer. The DimKeys (Surrogate Key) and DurableKeys(Supernatural Keys) from each Dimension is added to the Fact.
Reporting need is "as-of" ie on any given date, one should be able to see the granted_share_qty as of that date (similar to account balance as of that date) along with point-in-time values of few attributes from the Grant,Plan, Client, Customer dimensions.
First, we thought of creating a daily snapshot table where the data is repeated everyday in the fact (unless source sends any changes). However since there could be more than 100 million grant records , repeating this everyday was almost impossible, moreover the granted_share_qty doesnt change that often so why copy this everyday?.
So instead of a daily snapshot we thought of adding an EFFECTIVE_DT and EXPIRATION_DT on the Fact table (like a TIMESPAN PERIODIC SNAPSHOT table if such a thing exists)
This reduces the volume and perfectly satisfies a reporting need like "get me the granted_qty and grant details,client, plan, customer details as of 10/01/2022 " will translate to "select granted_qty from fact where 10/01/2022 between EFFECTIVE_DT and EXPIRATION_DT and Fact.DimKeys=Dim.DimKeys"
The challenge however is to keep the Dim Keys of the Fact in sync with Dim Keys of the Dimensions. Even if the Fact doesn't change, any DimKey changes due to versioning in any of the Dimension need to be tracked and versioned in the Fact. This has become an implementation nightmare
(To worsen the things, the Dims could undergo multiple intraday changes , so these are to be tracked near-real-time :-( )
Any thoughts how to handle such situations will be highly appreciated (Database: Snowflake)
P:S: We could remove the DimKeys from the Fact and use DurableKeys+Date to join between the Facts and Type 2 Dims, but that proposal is not favored/approved as of now
Thanks
Sunil
First, we thought of creating a daily snapshot table where the data is repeated everyday in the fact (unless source sends any changes). However
Stop right there. Whenever you know the right model but think it's un-workable for some reason, try harder. At a minimum test your assumption that it would be "too much data", and consider not materializing the snapshot but leaving it as a view and computing it at query time.
... moreover the granted_share_qty doesnt change that often so why copy this everyday?.
And there's your answer. Use a monthly snapshot instead of a daily snapshot, and you've divided the data by 30.

How should I auto-expire entires in an ETS table, while also limiting its total size?

I have a lot of analytics data which I'm looking to aggregate every so often (let's say one minute.) The data is being sent to a process which stores it in an ETS table, and every so often a timer sends it a message to process the table and remove old data.
The problem is that the amount of data that comes in varies wildly, and I basically need to do two things to it:
If the amount of data coming in is too big, drop the oldest data and push the new data in. This could be viewed as a fixed size queue, where if the amount of data hits the limit, the queue would start dropping things from the front as new data comes to the back.
If the queue isn't full, but the data has been sitting there for a while, automatically discard it (after a fixed timeout.)
If these two conditions are kept, I could basically assume the table has a constant size, and everything in it is newer than X.
The problem is that I haven't found an efficient way to do these two things together. I know I could use match specs to delete all entires older than X, which should be pretty fast if the index is the timestamp. Though I'm not sure if this is the best way to periodically trim the table.
The second problem is keeping the total table size under a certain limit, which I'm not really sure how to do. One solution comes to mind is to use an auto-increment field wich each insert, and when the table is being trimmed, look at the first and the last index, calculate the difference and again, use match specs to delete everything below the threshold.
Having said all this, it feels that I might be using the ETS table for something it wasn't designed to do. Is there a better way to store data like this, or am I approaching the problem correctly?
You can determine the amount of data occupied using ets:info(Tab, memory). The result is in number of words. But there is a catch. If you are storing binaries only heap binaries are included. So if you are storing mostly normal Erlang terms you can use it and with a timestamp as you described, it is a way to go. For size in bytes just multiply by erlang:system_info(wordsize).
I haven't used ETS for anything like this, but in other NoSQL DBs (DynamoDB) an easy solution is to use multiple tables: If you're keeping 24 hours of data, then keep 24 tables, one for each hour of the day. When you want to drop data, drop one whole table.
I would do the following: Create a server responsible for
receiving all the data storage messages. This messages should be time stamped by the client process (so it doesn't matter if it waits a little in the message queue). The server will then store then in the ETS, configured as ordered_set and using the timestamp, converted in an integer, as key (if the timestamps are delivered by the function erlang:now in one single VM they will be different, if you are using several nodes, then you will need to add some information such as the node name to guarantee uniqueness).
receiving a tick (using for example timer:send_interval) and then processes the message received in the last N µsec (using the Key = current time - N) and looking for ets:next(Table,Key), and continue to the last message. Finally you can discard all the messages via ets:delete_all_objects(Table). If you had to add an information such as a node name, it is still possible to use the next function (for example the keys are {TimeStamp:int(),Node:atom()} you can compare to {Time:int(),0} since a number is smaller than any atom)

Find changes quickly in larger SQL database?

There is a Java Swing application which uses an Informix database. I have user rights granted for the Swing application (i.e. no source code), and read only access to a mirror of the database.
Sometimes I need to find a database column, which is backing a GUI element (TextBox, TableField, Label...). What would be best approach to find out which database column and table is holding the data shown e.g. in a TextBox?
My general approach is to capture the state of the database. Commit a change using the GUI and then capture the state of the database again. Then I need to examine the difference. I've already tried:
Use the nrows field of systables: Didn't work, because the number in nrows does not seem to be a realtime representation of the row count.
Create a script with SELECT COUNT(*) ... for all tables: didn't work because too many tables (> 5000). Also tried to optimize by removing empty tables, but there are still too many left.
Is there a simple solution that I'm missing?
Please look at the Change Data Capture API and check if this suits your needs
There probably isn't a simple solution.
You probably need to build yourself a map of the database, or a data dictionary for it. It sounds as though you can eliminate many of the tables from consideration since they're empty — at least for a preliminary pass. If you're dealing with information in a text box, the chances are it is some sort of character data; you can analyze which (non-empty) tables which contain longer character strings, and they'd be the primary targets of your searches. If the schema is badly designed with lots of VARCHAR(255) columns even though the columns normally only hold short strings, life is more difficult. Over time, you can begin to classify tables and columns so that you end up knowing where to look for parts of the application.
One problem to beware of: the tabid in informix.systables isn't necessarily as stable as you'd like. Your data dictionary needs to record its own dd_tabid for the table it describes, and can store the last known tabid from informix.systables, but it needs to be ready to find a new tabid value on occasion. You should probably only mark data in your dictionary for logical deletion.
To some extent, this assumes you can create a database in which to record this information. If you can't create an Informix database, you may have to use something else (MySQL, or SQLite, perhaps) to store the data dictionary. Alternatively, go to your DBA team and ask them for the information. Unless you're trying something self-evidently untoward, they're likely to help (but politics can get in the way — I've no idea how collegial your teams are).

Can TCustomClientDataset apply updates in a batch mode?

I've got a DB Express TSimpleDataset connected to a Firebird database. I've just added several thousand rows of data to the dataset, and now it's time to call ApplyUpdates.
Unfortunately, this results in several thousand database hits as it tries to INSERT each row individually. That's a bit disappointing. What I'd really like to see is the dataset generate a single transaction with a few thousand INSERT statements in it and send the whole thing at once. I could set that up myself if I had to, but first I'd like to know if there's any method for it built in to the dataset or the DBX framework.
Don't know if it is possible with a TSimpleDataset (never used it), but surely you can if you use a TClientDataset + TDatasetProvider + <put your db dataset here>. You can write a BeforeUpdateRecord to handle the apply process yourself. Basically, it allows you to bypass the standard apply process, access the dataset delta with changes made to records, and then use your own code and components to apply changes to the database. For example you could call stored procedures to modify data, and so on.
However, there is a difference between a transaction and what is called "array DML", "bulk insert" or the like. Even if you use a single transaction (and an "apply" AFAIK happens in a single transaction), within the transaction you may still need to send "n" INSERTs. Some databases supports a way of sending a single INSERT (or update, delete) with an array of parameters to be inserted, reducing the number of single statements to be used - but that may be very database specific and AFAIK dbExpress/Datasnap do not support it - you still could use the BeforeUpdateRecord event to take advantage of specific database capabililties.

Can one rely on the auto-incrementing primary key in your database?

In my present Rails application, I am resolving scheduling conflicts by sorting the models by the "created_at" field. However, I realized that when inserting multiple models from a form that allows this, all of the created_at times are exactly the same!
This is more a question of best programming practices: Can your application rely on your ID column in your database to increment greater and greater with each INSERT to get their order of creation? To put it another way, can I sort a group of rows I pull out of my database by their ID column and be assured this is an accurate sort based on creation order? And is this a good practice in my application?
The generated identification numbers will be unique.
Regardless of whether you use Sequences, like in PostgreSQL and Oracle or if you use another mechanism like auto-increment of MySQL.
However, Sequences are most often acquired in bulks of, for example 20 numbers.
So with PostgreSQL you can not determine which field was inserted first. There might even be gaps in the id's of inserted records.
Therefore you shouldn't use a generated id field for a task like that in order to not rely on database implementation details.
Generating a created or updated field during command execution is much better for sorting by creation-, or update-time later on.
For example:
INSERT INTO A (data, created) VALUES (smething, DATE())
UPDATE A SET data=something, updated=DATE()
That depends on your database vendor.
MySQL I believe absolutely orders auto increment keys. SQL Server I don't know for sure that it does or not but I believe that it does.
Where you'll run into problems is with databases that don't support this functionality, most notably Oracle that uses sequences, which are roughly but not absolutely ordered.
An alternative might be to go for created time and then ID.
I believe the answer to your question is yes...if I read between the lines, I think you are concerned that the system may re-use ID's numbers that are 'missing' in the sequence, and therefore if you had used 1,2,3,5,6,7 as ID numbers, in all the implementations I know of, the next ID number will always be 8 (or possibly higher), but I don't know of any DB that would try and figure out that record Id #4 is missing, so attempt to re-use that ID number.
Though I am most familiar with SQL Server, I don't know why any vendor who try and fill the gaps in a sequence - think of the overhead of keeping that list of unused ID's, as opposed to just always keeping track of the last I number used, and adding 1.
I'd say you could safely rely on the next ID assigned number always being higher than the last - not just unique.
Yes the id will be unique and no, you can not and should not rely on it for sorting - it is there to guarantee row uniqueness only. The best approach is, as emktas indicated, to use a separate "updated" or "created" field for just this information.
For setting the creation time, you can just use a default value like this
CREATE TABLE foo (
id INTEGER UNSIGNED AUTO_INCREMENT NOT NULL;
created TIMESTAMP NOT NULL DEFAULT NOW();
updated TIMESTAMP;
PRIMARY KEY(id);
) engine=InnoDB; ## whatever :P
Now, that takes care of creation time. with update time I would suggest an AFTER UPDATE trigger like this one (of course you can do it in a separate query, but the trigger, in my opinion, is a better solution - more transparent):
DELIMITER $$
CREATE TRIGGER foo_a_upd AFTER UPDATE ON foo
FOR EACH ROW BEGIN
SET NEW.updated = NOW();
END;
$$
DELIMITER ;
And that should do it.
EDIT:
Woe is me. Foolishly I've not specified, that this is for mysql, there might be some differences in the function names (namely, 'NOW') and other subtle itty-bitty.
One caveat to EJB's answer:
SQL does not give any guarantee of ordering if you don't specify an order by column. E.g. if you delete some early rows, then insert 'em, the new ones may end up living in the same place in the db the old ones did (albeit with new IDs), and that's what it may use as its default sort.
FWIW, I typically use order by ID as an effective version of order by created_at. It's cheaper in that it doesn't require adding an index to a datetime field (which is bigger and therefore slower than a simple integer primary key index), guaranteed to be different, and I don't really care if a few rows that were added at about the same time sort in some slightly different order.
This is probably DB engine depended. I would check how your DB implements sequences and if there are no documented problems then I would decide to rely on ID.
E.g. Postgresql sequence is OK unless you play with the sequence cache parameters.
There is a possibility that other programmer will manually create or copy records from different DB with wrong ID column. However I would simplify the problem. Do not bother with low probability cases where someone will manually destroy data integrity. You cannot protect against everything.
My advice is to rely on sequence generated IDs and move your project forward.
In theory yes the highest id number is the last created. Remember though that databases do have the ability to temporaily turn off the insert of the autogenerated value , insert some records manaully and then turn it back on. These inserts are no typically used on a production system but can happen occasionally when moving a large chunk of data from another system.

Resources