RandomForest multiclass-multioutput Scores? - machine-learning

When using RandomForest I get the following error :
self.scores = metrics.accuracy_score(y_test, self.y_pred)
ValueError: multiclass-multioutput is not supported
I think it is because I use multiple-integer labels, instead of one-hot labels.
I have to use integer-labels.
Is there a way to calculate scores in my scenario ?

This seems the correct solution so far :
def scores(original, predicted):
row_matches = np.sum(np.all(original == predicted, axis=1))
row_total = float(original.shape[0])
matches = np.sum(original == predicted)
total = (row_total * original.shape[1])
mse = ((original - predicted)**2).mean(axis=1).mean()
return { 'acc_row' : row_matches/row_total, 'acc_items' : matches/total, 'mse': mse }

Related

R: Error in predict.xgboost: Feature names stored in `object` and `newdata` are different

I wrote a script using xgboost to predict soil class for a certain area using data from field and satellite images. The script as below:
`
rm(list=ls())
library(xgboost)
library(caret)
library(raster)
library(sp)
library(rgeos)
library(ggplot2)
setwd("G:/DATA")
data <- read.csv('96PointsClay02finalone.csv')
head(data)
summary(data)
dim(data)
ras <- stack("Allindices04TIFF.tif")
names(ras) <- c("b1", "b2", "b3", "b4", "b5", "b6", "b7", "b10", "b11","DEM",
"R1011", "SCI", "SAVI", "NDVI", "NDSI", "NDSandI", "MBSI",
"GSI", "GSAVI", "EVI", "DryBSI", "BIL", "BI","SRCI")
set.seed(27) # set seed for generating random data.
# createDataPartition() function from the caret package to split the original dataset into a training and testing set and split data into training (80%) and testing set (20%)
parts = createDataPartition(data$Clay, p = .8, list = F)
train = data[parts, ]
test = data[-parts, ]
#define predictor and response variables in training set
train_x = data.matrix(train[, -1])
train_y = train[,1]
#define predictor and response variables in testing set
test_x = data.matrix(test[, -1])
test_y = test[, 1]
#define final training and testing sets
xgb_train = xgb.DMatrix(data = train_x, label = train_y)
xgb_test = xgb.DMatrix(data = test_x, label = test_y)
#defining a watchlist
watchlist = list(train=xgb_train, test=xgb_test)
#fit XGBoost model and display training and testing data at each iteartion
model = xgb.train(data = xgb_train, max.depth = 3, watchlist=watchlist, nrounds = 100)
#define final model
model_xgboost = xgboost(data = xgb_train, max.depth = 3, nrounds = 86, verbose = 0)
summary(model_xgboost)
#use model to make predictions on test data
pred_y = predict(model_xgboost, xgb_test)
# performance metrics on the test data
mean((test_y - pred_y)^2) #mse - Mean Squared Error
caret::RMSE(test_y, pred_y) #rmse - Root Mean Squared Error
y_test_mean = mean(test_y)
rmseE<- function(error)
{
sqrt(mean(error^2))
}
y = test_y
yhat = pred_y
rmseresult=rmseE(y-yhat)
(r2 = R2(yhat , y, form = "traditional"))
cat('The R-square of the test data is ', round(r2,4), ' and the RMSE is ', round(rmseresult,4), '\n')
#use model to make predictions on satellite image
result <- predict(model_xgboost, ras[1:(nrow(ras)*ncol(ras))])
#create a result raster
res <- raster(ras)
#fill in results and add a "1" to them (to get back to initial class numbering! - see above "Prepare data" for more information)
res <- setValues(res,result+1)
#Save the output .tif file into saved directory
writeRaster(res, "xgbmodel_output", format = "GTiff", overwrite=T)
`
The script works well till it reachs
result <- predict(model_xgboost, ras[1:(nrow(ras)*ncol(ras))])
it takes some time then gives this error:
Error in predict.xgb.Booster(model_xgboost, ras[1:(nrow(ras) * ncol(ras))]) :
Feature names stored in `object` and `newdata` are different!
I realize that I am doing something wrong in that line. However, I do not know how to apply the xgboost model to a raster image that represents my study area.
It would be highly appreciated if someone give a hand, enlightened me, and helped me solve this problem....
My data as csv and raster image can be found here.
Finally, I got the reason for this error.
It was my mistake as the number of columns in the traning data was not the same as in the number of layers in the satellite image.

Training random forest (ranger) using caret with custom F4 metric in R yields but after running full ,error showing undefined columns selected

library(MLmetrics)
library(caret)
library(doSNOW)
library(ranger)
data is called as the "bank additional" full from this enter link description here and then following code to generate data1
library(VIM)
data1<-hotdeck(data,variable=c('job','marital','education','default','housing','loan'),domain_var = "y",imp_var=FALSE)
#converting the categorical variables to factors as they should be
library(magrittr)
data1%<>%
mutate_at(colnames(data1)[grepl('factor|logical|character',sapply(data1,class))],factor)
Now, splitting
library(caret)
#spliting data into train test 70/30
set.seed(1234)
trainIndex<-createDataPartition(data1$y,p=0.7,times = 1,list = F)
train<-data1[trainIndex,-11]
test<-data1[-trainIndex,-11]
levels(train$y)
train$y = as.factor(train$y)
# train$y = factor(train$y,levels = c("yes","no"))
# train$y = relevel(train$y,ref="yes")
Here, i got an idea of how to create F1 metric in Training Model in Caret Using F1 Metric
and using fbeta score formula i created f1_val; now i can't understand what lev,obs and pred are indicating . in my train dataset only column y showing data$obs , but no data$pred . So, is following error is due to this? and how to rectify this?
f1 <- function (data, lev = NULL, model = NULL) {
precision <- precision(data$obs,data$pred)
recall <- sensitivity(data$obs,data$pred)
f1_val <- (17*precision*recall)/(16*precision+recall)
names(f1_val) <- c("F1")
f1_val
}
tgrid <- expand.grid(
.mtry = 1:5,
.splitrule = "gini",
.min.node.size = seq(1,500,75)
)
model_caret <- train(train$y~., data = train,
method = "ranger",
trControl = trainControl(method="cv",
number = 2,
verboseIter = T,
classProbs = T,
summaryFunction = f1),
tuneGrid = tgrid,
num.trees = 500,
importance = "impurity",
metric = "F1")
After running for 3/4 minutes we get following :
Aggregating results
Selecting tuning parameters
Fitting mtry = 5, splitrule = gini, min.node.size = 1 on full training set
but error:
Error in `[.data.frame`(data, , all.vars(Terms), drop = FALSE) :
undefined columns selected
Also when running model_caret we get,
Error: object 'model_caret' not found
Kindly help. Thanks in advance

What to do when Seq2Seq network repeats words over and over in output?

So, I've been working on a project for a while, we have very little data, I know it would become much better if we were able to put together a much much larger dataset. That aside, my issue at the moment is when I have a sentence input, my outputs look like this right now:
contactid contactid contactid contactid
A single word is focused on and repeated over and over again. What can I do to overcome this hurdle?
Things I've tried:
Double checked I was appending start/stop tokens and make sure the tokens were properly placed in the top of their vocab files, I am sharing vocab.
I found something saying it could be due to poor word embeddings. To that end I checked with tensorboard and sure enough PCA showed a very dense cluster of points. Seeing that I grabbed Facebook's public pre trained word vectors and loaded them in as the embedding. Trained again and this time tensorboard PCA showed a much better picture.
Switched my training scheduler from basic to SampledScheduling to occasionally replace a training output with the ground truth.
Switched my decoder to use the beam search decoder I figured this may give more robust responses if the word choices were close together in the intermediary feature space.
For certain my perplexity is steadily decreasing.
Here is my dataset preperation code:
class ModelInputs(object):
"""Factory to construct various input hooks and functions depending on mode """
def __init__(
self, vocab_files, batch_size,
share_vocab=True, src_eos_id=1, tgt_eos_id=2
):
self.batch_size = batch_size
self.vocab_files = vocab_files
self.share_vocab = share_vocab
self.src_eos_id = src_eos_id
self.tgt_eos_id = tgt_eos_id
def get_inputs(self, file_path, num_infer=None, mode=tf.estimator.ModeKeys.TRAIN):
self.mode = mode
if self.mode == tf.estimator.ModeKeys.TRAIN:
return self._training_input_hook(file_path)
if self.mode == tf.estimator.ModeKeys.EVAL:
return self._validation_input_hook(file_path)
if self.mode == tf.estimator.ModeKeys.PREDICT:
if num_infer is None:
raise ValueError('If performing inference must supply number of predictions to be made.')
return self._infer_input_hook(file_path, num_infer)
def _prepare_data(self, dataset, out=False):
prep_set = dataset.map(lambda string: tf.string_split([string]).values)
prep_set = prep_set.map(lambda words: (words, tf.size(words)))
if out == True:
return prep_set.map(lambda words, size: (self.vocab_tables[1].lookup(words), size))
return prep_set.map(lambda words, size: (self.vocab_tables[0].lookup(words), size))
def _batch_data(self, dataset, src_eos_id, tgt_eos_id):
batched_set = dataset.padded_batch(
self.batch_size,
padded_shapes=((tf.TensorShape([None]), tf.TensorShape([])), (tf.TensorShape([None]), tf.TensorShape([]))),
padding_values=((src_eos_id, 0), (tgt_eos_id, 0))
)
return batched_set
def _batch_infer_data(self, dataset, src_eos_id):
batched_set = dataset.padded_batch(
self.batch_size,
padded_shapes=(tf.TensorShape([None]), tf.TensorShape([])),
padding_values=(src_eos_id, 0)
)
return batched_set
def _create_vocab_tables(self, vocab_files, share_vocab=False):
if vocab_files[1] is None and share_vocab == False:
raise ValueError('If share_vocab is set to false must provide target vocab. (src_vocab_file, \
target_vocab_file)')
src_vocab_table = lookup_ops.index_table_from_file(
vocab_files[0],
default_value=UNK_ID
)
if share_vocab:
tgt_vocab_table = src_vocab_table
else:
tgt_vocab_table = lookup_ops.index_table_from_file(
vocab_files[1],
default_value=UNK_ID
)
return src_vocab_table, tgt_vocab_table
def _prepare_iterator_hook(self, hook, scope_name, iterator, file_path, name_placeholder):
if self.mode == tf.estimator.ModeKeys.TRAIN or self.mode == tf.estimator.ModeKeys.EVAL:
feed_dict = {
name_placeholder[0]: file_path[0],
name_placeholder[1]: file_path[1]
}
else:
feed_dict = {name_placeholder: file_path}
with tf.name_scope(scope_name):
hook.iterator_initializer_func = \
lambda sess: sess.run(
iterator.initializer,
feed_dict=feed_dict,
)
def _set_up_train_or_eval(self, scope_name, file_path):
hook = IteratorInitializerHook()
def input_fn():
with tf.name_scope(scope_name):
with tf.name_scope('sentence_markers'):
src_eos_id = tf.constant(self.src_eos_id, dtype=tf.int64)
tgt_eos_id = tf.constant(self.tgt_eos_id, dtype=tf.int64)
self.vocab_tables = self._create_vocab_tables(self.vocab_files, self.share_vocab)
in_file = tf.placeholder(tf.string, shape=())
in_dataset = self._prepare_data(tf.contrib.data.TextLineDataset(in_file).repeat(None))
out_file = tf.placeholder(tf.string, shape=())
out_dataset = self._prepare_data(tf.contrib.data.TextLineDataset(out_file).repeat(None))
dataset = tf.contrib.data.Dataset.zip((in_dataset, out_dataset))
dataset = self._batch_data(dataset, src_eos_id, tgt_eos_id)
iterator = dataset.make_initializable_iterator()
next_example, next_label = iterator.get_next()
self._prepare_iterator_hook(hook, scope_name, iterator, file_path, (in_file, out_file))
return next_example, next_label
return (input_fn, hook)
def _training_input_hook(self, file_path):
input_fn, hook = self._set_up_train_or_eval('train_inputs', file_path)
return (input_fn, hook)
def _validation_input_hook(self, file_path):
input_fn, hook = self._set_up_train_or_eval('eval_inputs', file_path)
return (input_fn, hook)
def _infer_input_hook(self, file_path, num_infer):
hook = IteratorInitializerHook()
def input_fn():
with tf.name_scope('infer_inputs'):
with tf.name_scope('sentence_markers'):
src_eos_id = tf.constant(self.src_eos_id, dtype=tf.int64)
self.vocab_tables = self._create_vocab_tables(self.vocab_files, self.share_vocab)
infer_file = tf.placeholder(tf.string, shape=())
dataset = tf.contrib.data.TextLineDataset(infer_file)
dataset = self._prepare_data(dataset)
dataset = self._batch_infer_data(dataset, src_eos_id)
iterator = dataset.make_initializable_iterator()
next_example, seq_len = iterator.get_next()
self._prepare_iterator_hook(hook, 'infer_inputs', iterator, file_path, infer_file)
return ((next_example, seq_len), None)
return (input_fn, hook)
And here is my model:
class Seq2Seq():
def __init__(
self, batch_size, inputs,
outputs, inp_vocab_size, tgt_vocab_size,
embed_dim, mode, time_major=False,
enc_embedding=None, dec_embedding=None, average_across_batch=True,
average_across_timesteps=True, vocab_path=None, embedding_path='./data_files/wiki.simple.vec'
):
embed_np = self._get_embedding(embedding_path)
if not enc_embedding:
self.enc_embedding = tf.contrib.layers.embed_sequence(
inputs,
inp_vocab_size,
embed_dim,
trainable=True,
scope='embed',
initializer=tf.constant_initializer(value=embed_np, dtype=tf.float32)
)
else:
self.enc_embedding = enc_embedding
if mode == tf.estimator.ModeKeys.TRAIN or mode == tf.estimator.ModeKeys.EVAL:
if not dec_embedding:
embed_outputs = tf.contrib.layers.embed_sequence(
outputs,
tgt_vocab_size,
embed_dim,
trainable=True,
scope='embed',
reuse=True
)
with tf.variable_scope('embed', reuse=True):
dec_embedding = tf.get_variable('embeddings')
self.embed_outputs = embed_outputs
self.dec_embedding = dec_embedding
else:
self.dec_embedding = dec_embedding
else:
with tf.variable_scope('embed', reuse=True):
self.dec_embedding = tf.get_variable('embeddings')
if mode == tf.estimator.ModeKeys.PREDICT and vocab_path is None:
raise ValueError('If mode is predict, must supply vocab_path')
self.vocab_path = vocab_path
self.inp_vocab_size = inp_vocab_size
self.tgt_vocab_size = tgt_vocab_size
self.average_across_batch = average_across_batch
self.average_across_timesteps = average_across_timesteps
self.time_major = time_major
self.batch_size = batch_size
self.mode = mode
def _get_embedding(self, embedding_path):
model = KeyedVectors.load_word2vec_format(embedding_path)
vocab = model.vocab
vocab_len = len(vocab)
return np.array([model.word_vec(k) for k in vocab.keys()])
def _get_lstm(self, num_units):
return tf.nn.rnn_cell.BasicLSTMCell(num_units)
def encode(self, num_units, num_layers, seq_len, cell_fw=None, cell_bw=None):
if cell_fw and cell_bw:
fw_cell = cell_fw
bw_cell = cell_bw
else:
fw_cell = self._get_lstm(num_units)
bw_cell = self._get_lstm(num_units)
encoder_outputs, bi_encoder_state = tf.nn.bidirectional_dynamic_rnn(
fw_cell,
bw_cell,
self.enc_embedding,
sequence_length=seq_len,
time_major=self.time_major,
dtype=tf.float32
)
c_state = tf.concat([bi_encoder_state[0].c, bi_encoder_state[1].c], axis=1)
h_state = tf.concat([bi_encoder_state[0].h, bi_encoder_state[1].h], axis=1)
encoder_state = tf.contrib.rnn.LSTMStateTuple(c=c_state, h=h_state)
return tf.concat(encoder_outputs, -1), encoder_state
def _train_decoder(self, decoder_cell, out_seq_len, encoder_state, helper):
if not helper:
helper = tf.contrib.seq2seq.ScheduledEmbeddingTrainingHelper(
self.embed_outputs,
out_seq_len,
self.dec_embedding,
0.3,
)
# helper = tf.contrib.seq2seq.TrainingHelper(
# self.dec_embedding,
# out_seq_len,
# )
projection_layer = layers_core.Dense(self.tgt_vocab_size, use_bias=False)
decoder = tf.contrib.seq2seq.BasicDecoder(
decoder_cell,
helper,
encoder_state,
output_layer=projection_layer
)
return decoder
def _predict_decoder(self, cell, encoder_state, beam_width, length_penalty_weight):
tiled_encoder_state = tf.contrib.seq2seq.tile_batch(
encoder_state, multiplier=beam_width
)
with tf.name_scope('sentence_markers'):
sos_id = tf.constant(1, dtype=tf.int32)
eos_id = tf.constant(2, dtype=tf.int32)
start_tokens = tf.fill([self.batch_size], sos_id)
end_token = eos_id
projection_layer = layers_core.Dense(self.tgt_vocab_size, use_bias=False)
emb = tf.squeeze(self.dec_embedding)
decoder = tf.contrib.seq2seq.BeamSearchDecoder(
cell=cell,
embedding=self.dec_embedding,
start_tokens=start_tokens,
end_token=end_token,
initial_state=tiled_encoder_state,
beam_width=beam_width,
output_layer=projection_layer,
length_penalty_weight=length_penalty_weight
)
return decoder
def decode(
self, num_units, out_seq_len,
encoder_state, cell=None, helper=None,
beam_width=None, length_penalty_weight=None
):
with tf.name_scope('Decode'):
if cell:
decoder_cell = cell
else:
decoder_cell = tf.nn.rnn_cell.BasicLSTMCell(2*num_units)
if self.mode != estimator.ModeKeys.PREDICT:
decoder = self._train_decoder(decoder_cell, out_seq_len, encoder_state, helper)
else:
decoder = self._predict_decoder(decoder_cell, encoder_state, beam_width, length_penalty_weight)
outputs = tf.contrib.seq2seq.dynamic_decode(
decoder,
maximum_iterations=20,
swap_memory=True,
)
outputs = outputs[0]
if self.mode != estimator.ModeKeys.PREDICT:
return outputs.rnn_output, outputs.sample_id
else:
return outputs.beam_search_decoder_output, outputs.predicted_ids
def prepare_predict(self, sample_id):
rev_table = lookup_ops.index_to_string_table_from_file(
self.vocab_path, default_value=UNK)
predictions = rev_table.lookup(tf.to_int64(sample_id))
return tf.estimator.EstimatorSpec(
predictions=predictions,
mode=tf.estimator.ModeKeys.PREDICT
)
def prepare_train_eval(
self, t_out,
out_seq_len, labels, lr,
train_op=None, loss=None
):
if not loss:
weights = tf.sequence_mask(
out_seq_len,
dtype=t_out.dtype
)
loss = tf.contrib.seq2seq.sequence_loss(
t_out,
labels,
weights,
average_across_batch=self.average_across_batch,
)
if not train_op:
train_op = tf.contrib.layers.optimize_loss(
loss,
tf.train.get_global_step(),
optimizer='SGD',
learning_rate=lr,
summaries=['loss', 'learning_rate']
)
return tf.estimator.EstimatorSpec(
mode=self.mode,
loss=loss,
train_op=train_op,
)
This type of repetition is called a "text degeneration".
There is a great paper from 2019 which analyse this phenomenon: The Curious Case of Neural Text Degeneration by Ari Holtzman et al. from the Allen Institute for Artificial Intelligence.
The repetition may come from the type of text search (text sampling) on the decoder site. Many people implement this just by the most probable next world proposed by the model (argmax on the softmax on the last layer) or by so called beam search. In fact the beam search is the industry standard for today.
This is the example of Beam search from the article:
Continuation (BeamSearch, b=10):
"The unicorns were able to communicate with each other, they said unicorns. a statement that the unicorns. Professor of the Department of Los Angeles, the most important place the world to be recognition of the world to be a of the world to be a of the world to be a of the world to be a of the world to be a of the world to be a of the world to be a of the world to be a of theā€¦
As you can see there is a great amount of repetition.
According to the paper this curious case may be explained by the fact that each repeated sequence of words have higher probability than the sequence without the next repetition:
The article propose some workarounds with words sampling by the decoder. It definitely requires more study, but this is the best explanation we have today.
The other is that your model need still more training. In many cases I faced a similar behaviour when I had big training set and model still couldn't generalise well over whole diversity of the data. To test this hypothesis - try to train on smaller dataset and see if it generalise (produce meaningful results).
But even if your model generalise well enough, that doesn't mean you won't ever face the repetition pattern. Unless you change the sampling patter of the decoder, it is a common scenario.
If you train on a small data then try to decrease the number of parameters, f. e. number of neurons in each layer.
For me, when the network outputs one word all the time, significant decrease of learning rate helps.

Sklearn SVR shows worst result after scaling

Following code works quite well when used without scaling, but when scaling is applied results are too far from actual. Here is the code:
data =(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63).
model = SVR(kernel='poly', C=1e3, degree=3)
data_min = min(data)
data_max = max(data)
diff = data_max - data_min
data_scaled = []
for i in range(0,len(data)):
data_scaled.append((data[i]-data_min)/diff)
data_scaled = np.matrix(data_scaled)
data_scaled = data_scaled.reshape(-1,1)
y = (1,8,27,64,125,216,343,512,729,1000,1331,1728,2197,2744,3375,4096,4913,5832,6859,8000,9261,10648,12167,13824,15625,17576,19683,21952,24389,27000,29791,32768,35937,39304,42875,46656,50653,54872,59319,64000,68921,74088,79507,85184,91125,97336,103823,110592,117649,125000,132651,140608,148877,157464,166375,175616,185193,195112,205379,216000,226981,238328,250047)
model.fit(data_scaled, y)
predicted = model.predict(data_scaled)

svm classifier for text classification

I am trying with SVC classifier to classify text.
#self.vectorizer = HashingVectorizer(non_negative=True)
#self.vectorizer = TfidfVectorizer(sublinear_tf=True, max_df=0.5, stop_words='english')
self.hasher = FeatureHasher(input_type='string',non_negative=True)
from sklearn.svm import SVC
self.clf = SVC(probability=True)
for text in self.data_train.data:
text = self.modifyQuery(text.decode('utf-8','ignore'))
training_data.append(text)
raw_X = (self.token_ques(text) for text in training_data)
#X_train = self.vectorizer.transform(training_data)
X_train = self.hasher.transform(raw_X)
y_train = self.data_train.target
self.clf.fit(X_train, y_train)
test classifier:
raw_X = (self.token_ques(text) for text in test_data)
X_test = self.hasher.transform(raw_X)
#X_test = self.vectorizer.transform(test_data)
pred = self.clf.predict(X_test)
print("pred=>", pred)
self.categories = self.data_train.target_names
for doc, category in zip(test_data, pred):
print('%r => %s' % (doc, self.categories[category]))
index = 1
predict_prob = self.clf.predict_proba(X_test)
for doc, category_list in zip(test_data, predict_prob):
#print values
I tried with hashing, feature, tfidf vectorizer but still it gives wrong answer for all queries (class with highest datasize comes as answer). While using naive bayes it gives correct result as per class and input query.
Am I doing anything wrong in code?
Update
I have total 8 classes, and each class having 100-200 lines of sentences. One class with 480 lines. This class always comes as a answer currently

Resources