Following code works quite well when used without scaling, but when scaling is applied results are too far from actual. Here is the code:
data =(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63).
model = SVR(kernel='poly', C=1e3, degree=3)
data_min = min(data)
data_max = max(data)
diff = data_max - data_min
data_scaled = []
for i in range(0,len(data)):
data_scaled.append((data[i]-data_min)/diff)
data_scaled = np.matrix(data_scaled)
data_scaled = data_scaled.reshape(-1,1)
y = (1,8,27,64,125,216,343,512,729,1000,1331,1728,2197,2744,3375,4096,4913,5832,6859,8000,9261,10648,12167,13824,15625,17576,19683,21952,24389,27000,29791,32768,35937,39304,42875,46656,50653,54872,59319,64000,68921,74088,79507,85184,91125,97336,103823,110592,117649,125000,132651,140608,148877,157464,166375,175616,185193,195112,205379,216000,226981,238328,250047)
model.fit(data_scaled, y)
predicted = model.predict(data_scaled)
Related
I'm running a machine learning model that requires multiple transformations. I applied polynomial transformations, interactions, and also a feature selection using SelectKBest:
transformer = ColumnTransformer(
transformers=[("cat", ce.cat_boost.CatBoostEncoder(y_train), cat_features),]
)
X_train_transformed = transformer.fit_transform(X_train, y_train)
X_test_transformed = transformer.transform(X_test)
poly = PolynomialFeatures(2)
X_train_polynomial = poly.fit_transform(X_train_transformed)
X_test_polynomial = poly.transform(X_test_transformed)
interaction = PolynomialFeatures(2, interaction_only=True)
X_train_interaction = interaction.fit_transform(X_train_polynomial)
X_test_interaction = interaction.transform(X_test_polynomial)
feature_selection = SelectKBest(chi2, k=55)
train_features = feature_selection.fit_transform(X_train_interaction, y_train)
test_features = feature_selection.transform(X_test_interaction)
model = lgb.LGBMClassifier()
model.fit(train_features, y_train)
However, I want to get the feature names and I have no idea on how to get them.
I'm trying to create a Gaussian HMM model in pyro to infer the parameters of a very simple Markov sequence. However, my model fails to infer the parameters and something wired happened during the training process. Using the same sequence, hmmlearn has successfully infer the true parameters.
Full code can be accessed in here:
https://colab.research.google.com/drive/1u_4J-dg9Y1CDLwByJ6FL4oMWMFUVnVNd#scrollTo=ZJ4PzdTUBgJi
My model is modified from the example in here:
https://github.com/pyro-ppl/pyro/blob/dev/examples/hmm.py
I manually created a first order Markov sequence where there are 3 states, the true means are [-10, 0, 10], sigmas are [1,2,1].
Here is my model
def model(observations, num_state):
assert not torch._C._get_tracing_state()
with poutine.mask(mask = True):
p_transition = pyro.sample("p_transition",
dist.Dirichlet((1 / num_state) * torch.ones(num_state, num_state)).to_event(1))
p_init = pyro.sample("p_init",
dist.Dirichlet((1 / num_state) * torch.ones(num_state)))
p_mu = pyro.param(name = "p_mu",
init_tensor = torch.randn(num_state),
constraint = constraints.real)
p_tau = pyro.param(name = "p_tau",
init_tensor = torch.ones(num_state),
constraint = constraints.positive)
current_state = pyro.sample("x_0",
dist.Categorical(p_init),
infer = {"enumerate" : "parallel"})
for t in pyro.markov(range(1, len(observations))):
current_state = pyro.sample("x_{}".format(t),
dist.Categorical(Vindex(p_transition)[current_state, :]),
infer = {"enumerate" : "parallel"})
pyro.sample("y_{}".format(t),
dist.Normal(Vindex(p_mu)[current_state], Vindex(p_tau)[current_state]),
obs = observations[t])
My model is compiled as
device = torch.device("cuda:0")
obs = torch.tensor(obs)
obs = obs.to(device)
torch.set_default_tensor_type("torch.cuda.FloatTensor")
guide = AutoDelta(poutine.block(model, expose_fn = lambda msg : msg["name"].startswith("p_")))
Elbo = Trace_ELBO
elbo = Elbo(max_plate_nesting = 1)
optim = Adam({"lr": 0.001})
svi = SVI(model, guide, optim, elbo)
As the training goes, the ELBO has decreased steadily as shown. However, the three means of the states converges.
I have tried to put the for loop of my model into a pyro.plate and switch pyro.param to pyro.sample and vice versa, but nothing worked for my model.
I have not tried this model, but I think it should be possible to solve the problem by modifying the model in the following way:
def model(observations, num_state):
assert not torch._C._get_tracing_state()
with poutine.mask(mask = True):
p_transition = pyro.sample("p_transition",
dist.Dirichlet((1 / num_state) * torch.ones(num_state, num_state)).to_event(1))
p_init = pyro.sample("p_init",
dist.Dirichlet((1 / num_state) * torch.ones(num_state)))
p_mu = pyro.sample("p_mu",
dist.Normal(torch.zeros(num_state), torch.ones(num_state)).to_event(1))
p_tau = pyro.sample("p_tau",
dist.HalfCauchy(torch.zeros(num_state)).to_event(1))
current_state = pyro.sample("x_0",
dist.Categorical(p_init),
infer = {"enumerate" : "parallel"})
for t in pyro.markov(range(1, len(observations))):
current_state = pyro.sample("x_{}".format(t),
dist.Categorical(Vindex(p_transition)[current_state, :]),
infer = {"enumerate" : "parallel"})
pyro.sample("y_{}".format(t),
dist.Normal(Vindex(p_mu)[current_state], Vindex(p_tau)[current_state]),
obs = observations[t])
The model would then be trained using MCMC:
# MCMC
hmc_kernel = NUTS(model, target_accept_prob = 0.9, max_tree_depth = 7)
mcmc = MCMC(hmc_kernel, num_samples = 1000, warmup_steps = 100, num_chains = 1)
mcmc.run(obs)
The results could then be analysed using:
mcmc.get_samples()
Below code takes only 32*32 input, I want to feed in 128*128 images, how to go about it. The code is from the tutorial - https://github.com/awjuliani/TF-Tutorials/blob/master/DCGAN.ipynb
def generator(z):
zP = slim.fully_connected(z,4*4*256,normalizer_fn=slim.batch_norm,\
activation_fn=tf.nn.relu,scope='g_project',weights_initializer=initializer)
zCon = tf.reshape(zP,[-1,4,4,256])
gen1 = slim.convolution2d_transpose(\
zCon,num_outputs=64,kernel_size=[5,5],stride=[2,2],\
padding="SAME",normalizer_fn=slim.batch_norm,\
activation_fn=tf.nn.relu,scope='g_conv1', weights_initializer=initializer)
gen2 = slim.convolution2d_transpose(\
gen1,num_outputs=32,kernel_size=[5,5],stride=[2,2],\
padding="SAME",normalizer_fn=slim.batch_norm,\
activation_fn=tf.nn.relu,scope='g_conv2', weights_initializer=initializer)
gen3 = slim.convolution2d_transpose(\
gen2,num_outputs=16,kernel_size=[5,5],stride=[2,2],\
padding="SAME",normalizer_fn=slim.batch_norm,\
activation_fn=tf.nn.relu,scope='g_conv3', weights_initializer=initializer)
g_out = slim.convolution2d_transpose(\
gen3,num_outputs=1,kernel_size=[32,32],padding="SAME",\
biases_initializer=None,activation_fn=tf.nn.tanh,\
scope='g_out', weights_initializer=initializer)
return g_out
def discriminator(bottom, reuse=False):
dis1 = slim.convolution2d(bottom,16,[4,4],stride=[2,2],padding="SAME",\
biases_initializer=None,activation_fn=lrelu,\
reuse=reuse,scope='d_conv1',weights_initializer=initializer)
dis2 = slim.convolution2d(dis1,32,[4,4],stride=[2,2],padding="SAME",\
normalizer_fn=slim.batch_norm,activation_fn=lrelu,\
reuse=reuse,scope='d_conv2', weights_initializer=initializer)
dis3 = slim.convolution2d(dis2,64,[4,4],stride=[2,2],padding="SAME",\
normalizer_fn=slim.batch_norm,activation_fn=lrelu,\
reuse=reuse,scope='d_conv3',weights_initializer=initializer)
d_out = slim.fully_connected(slim.flatten(dis3),1,activation_fn=tf.nn.sigmoid,\
reuse=reuse,scope='d_out', weights_initializer=initializer)
return d_out
Below is the error which I get when I feed 128*128 images.
Trying to share variable d_out/weights, but specified shape (1024, 1) and found shape (16384, 1).
The generator is generating 32*32 images, and thus when we feed any other dimension in discriminator, it results in the given error.
The solution is to generate 128*128 images from the generator, by
1. Adding more no. of layers(2 in this case)
2. Changing the input to the generator
zP = slim.fully_connected(z,16*16*256,normalizer_fn=slim.batch_norm,\
activation_fn=tf.nn.relu,scope='g_project',weights_initializer=initializer)
zCon = tf.reshape(zP,[-1,16,16,256])
I want to display a decomposition wavelet in 3 level.
so can any help me in give a Matlab function to display it?
[cA cH cV cD]=dwt2(a,waveletname);
out=[cA cH;cV cD];
figure;imshow(out,[]);
That only works for the first level.
actually, I want to representation square mode such wavemenu in Matlab.
example of the view decomposition
I am fairly new to it.
thanx.
You should use the function wavedec2(Image,numberOfLevels,'wname') with the amount of levels that you need.
For more information look at
http://www.mathworks.com/help/wavelet/ref/wavedec2.html
Code for example with db1
clear all
im = imread('cameraman.tif');
[c,s] = wavedec2(im,3,'db1');
A1 = appcoef2(c,s,'db1',1);
[H1,V1,D1] = detcoef2('all',c,s,1);
A2 = appcoef2(c,s,'db1',2);
[H2,V2,D2] = detcoef2('all',c,s,2);
A3 = appcoef2(c,s,'db1',3);
[H3,V3,D3] = detcoef2('all',c,s,3);
V1img = wcodemat(V1,255,'mat',1);
H1img = wcodemat(H1,255,'mat',1);
D1img = wcodemat(D1,255,'mat',1);
A1img = wcodemat(A1,255,'mat',1);
V2img = wcodemat(V2,255,'mat',1);
H2img = wcodemat(H2,255,'mat',1);
D2img = wcodemat(D2,255,'mat',1);
A2img = wcodemat(A2,255,'mat',1);
V3img = wcodemat(V3,255,'mat',1);
H3img = wcodemat(H3,255,'mat',1);
D3img = wcodemat(D3,255,'mat',1);
A3img = wcodemat(A3,255,'mat',1);
mat3 = [A3img,V3img;H3img,D3img];
mat2 = [mat3,V2img;H2img,D2img];
mat1 = [mat2,V1img;H1img,D1img];
imshow(uint8(mat1))
The final result
General question on the speed of (rCharts) highcharts rendering.
Given the following code
rm(list = ls())
require(rCharts)
set.seed(2)
time_stamp<-seq(from=as.POSIXct("2014-05-20 01:00",tz=""),to=as.POSIXct("2014-05-22 20:00",tz=""),by="1 min")
Data1<-abs(rnorm(length(time_stamp))*50)
Data2<-rnorm(length(time_stamp))
time<-as.numeric(time_stamp)*1000
CombData=data.frame(time,Data1,Data2)
CombData$Data1=round(CombData$Data1,2);CombData$Data2=round(CombData$Data2,2);
HCGraph <- Highcharts$new()
HCGraph$yAxis(list(list(title = list(text = 'Data1')),
list(title = list(text = 'Data2'),
opposite =TRUE)))
HCGraph$series(data = toJSONArray2(CombData[,c('time','Data1')], json = F, names = F),enableMouseTracking=FALSE,shadow=FALSE,name = "Data1",type = "line")
HCGraph$series(data = toJSONArray2(CombData[,c('time','Data2')], json = F, names = F),enableMouseTracking=FALSE,shadow=FALSE,name = "Data2",type = "line",yAxis=1)
HCGraph$xAxis(type = "datetime"); HCGraph$chart(zoomType = "x")
HCGraph$plotOptions(column=list(animation=FALSE),shadow=FALSE,line=list(marker=list(enabled=FALSE)));
HCGraph
Produces a highcharts graph of 2 series each 4021 points in length and renders immediately.
However, if I increase the timespan to say 10 days (8341 points) the resulting plot can take several minutes to generate.
I'm aware there are several modifications that can be made to highcharts for better performance,
Highcharts Performance Enhancement Method?,
however, are there any changes I can make from an R / rCharts perspective to speed up performance?
Cheers