Using cv.matchTemplate to find multiple best matches - opencv

I am using the function cv.matchTemplate to try to find template matches.
result = cv.matchTemplate(img, templ, match_method)
After I run the function I have a bunch of answers in list result. I want to filter the list to find the best n matches. The data in result just a large array of numbers so I don't know what criteria to filter based on. Using extremes = cv.minMaxLoc(result, None) filters the result list in an undesired way before converting them to locations.
The match_method is cv.TM_SQDIFF. I want to:
filter the results down to the best matches
Use the results to obtain the locations
How can I acheive this?

You can treshold the result of matchTemplate to find locations with sufficient match. This tutorial should get you started. Read at the bottom of the page for finding multiple matches.
import numpy as np
threshold = 0.2
loc = np.where( result <= threshold) # filter the results
for pt in zip(*loc[::-1]): #pt marks the location of the match
cv2.rectangle(img_rgb, pt, (pt[0] + w, pt[1] + h), (0,0,255), 2)
Keep in mind depending on the function you use will determine how you filter. cv.TM_SQDIFF tends to zero as the match quality increases so setting the threshold closer to zero filters out worse. The opposite is true for cv.TM CCORR cv.TM_CCORR_NORMED cv.TM_COEFF and cv.TM_COEFF_NORMED matching methods (better tends to 1)

The above answer does not find the best N matches as the question asked. It filters out answers based on a threshold leaving open the (likely) possibility that you still have more than N results or zero results that beat the threshold.
To find the N 'best matches' we're looking for the N highest numbers in a 2d array and retrieving their indexes so we know the location. We can use nump.argpartition to find the highest N indexes in a 1d array and numpy.ndarray.flatten with numpy.unravel_index to go back and forth between a 2d and 1d array like so:
find_num = 5
result = cv.matchTemplate(img, templ, match_method)
idx_1d = np.argpartition(result.flatten(), -find_num)[-find_num:]
idx_2d = np.unravel_index(idx_1d, result.shape)
From here you have the x,y locations of the top 5 matches.

Related

how to find the smallest n values in a distributed dask array

I have a distributed dask array with shape (2400,2400) with chunksize (100,100). I thought I could use topk(-n) to find the smallest n values. However, it appears to return an array of shape (2400,n), so it looks like it finds the smallest n in each row.Is there a way to use topk to get the smallest n values across all rows (entire array)?
One idea is to call topk twice, once for each axis.
>>> dist
dask.array<pow, shape=(2400, 2400), dtype=float64, chunksize=(100, 100)>
>>> dist.topk(-5,axis=0).topk(-5,axis=1).compute()
array([[ 0. , 2620.09503644, 2842.15200157, 2955.08409356,
3163.49458669],
[3660.67698657, 3670.4457495 , 3700.09837707, 3717.09052889,
4002.86497399],
[4125.89820524, 4139.44658137, 4250.50420539, 4331.01304547,
4402.14606754],
[4328.22966119, 4378.25193428, 4507.94409903, 4522.4913488 ,
4555.06860541],
[4441.58755402, 4560.95625938, 4576.39333974, 4682.06215251,
4765.11531865]])
One idea is to call topk twice, once for each axis.
Sounds good to me!
You might consider flattening the array first, but I can't see an advantage to this to what you've already found.
x.flatten().topk(...)

arbitrarily weighted moving average (low- and high-pass filters)

Given input signal x (e.g. a voltage, sampled thousand times per second couple of minutes long), I'd like to calculate e.g.
/ this is not q
y[3] = -3*x[0] - x[1] + x[2] + 3*x[3]
y[4] = -3*x[1] - x[2] + x[3] + 3*x[4]
. . .
I'm aiming for variable window length and weight coefficients. How can I do it in q? I'm aware of mavg and signal processing in q and moving sum qidiom
In the DSP world it's called applying filter kernel by doing convolution. Weight coefficients define the kernel, which makes a high- or low-pass filter. The example above calculates the slope from last four points, placing the straight line via least squares method.
Something like this would work for parameterisable coefficients:
q)x:10+sums -1+1000?2f
q)f:{sum x*til[count x]xprev\:y}
q)f[3 1 -1 -3] x
0n 0n 0n -2.385585 1.423811 2.771659 2.065391 -0.951051 -1.323334 -0.8614857 ..
Specific cases can be made a bit faster (running 0 xprev is not the best thing)
q)g:{prev[deltas x]+3*x-3 xprev x}
q)g[x]~f[3 1 -1 -3]x
1b
q)\t:100000 f[3 1 1 -3] x
4612
q)\t:100000 g x
1791
There's a kx white paper of signal processing in q if this area interests you: https://code.kx.com/q/wp/signal-processing/
This may be a bit old but I thought I'd weigh in. There is a paper I wrote last year on signal processing that may be of some value. Working purely within KDB, dependent on the signal sizes you are using, you will see much better performance with a FFT based convolution between the kernel/window and the signal.
However, I've only written up a simple radix-2 FFT, although in my github repo I do have the untested work for a more flexible Bluestein algorithm which will allow for more variable signal length. https://github.com/callumjbiggs/q-signals/blob/master/signal.q
If you wish to go down the path of performing a full manual convolution by a moving sum, then the best method would be to break it up into blocks equal to the kernel/window size (which was based on some work Arthur W did many years ago)
q)vec:10000?100.0
q)weights:30?1.0
q)wsize:count weights
q)(weights$(((wsize-1)#0.0),vec)til[wsize]+) each til count v
32.5931 75.54583 100.4159 124.0514 105.3138 117.532 179.2236 200.5387 232.168.
If your input list not big then you could use the technique mentioned here:
https://code.kx.com/q/cookbook/programming-idioms/#how-do-i-apply-a-function-to-a-sequence-sliding-window
That uses 'scan' adverb. As that process creates multiple lists which might be inefficient for big lists.
Other solution using scan is:
q)f:{sum y*next\[z;x]} / x-input list, y-weights, z-window size-1
q)f[x;-3 -1 1 3;3]
This function also creates multiple lists so again might not be very efficient for big lists.
Other option is to use indices to fetch target items from the input list and perform the calculation. This will operate only on input list.
q) f:{[l;w;i]sum w*l i+til 4} / w- weight, l- input list, i-current index
q) f[x;-3 -1 1 3]#'til count x
This is a very basic function. You can add more variables to it as per your requirements.

How to apply different cost functions to different output channels of a convolutional network?

I have a convolutional neural network whose output is a 4-channel 2D image. I want to apply sigmoid activation function to the first two channels and then use BCECriterion to computer the loss of the produced images with the ground truth ones. I want to apply squared loss function to the last two channels and finally computer the gradients and do backprop. I would also like to multiply the cost of the squared loss for each of the two last channels by a desired scalar.
So the cost has the following form:
cost = crossEntropyCh[{1, 2}] + l1 * squaredLossCh_3 + l2 * squaredLossCh_4
The way I'm thinking about doing this is as follow:
criterion1 = nn.BCECriterion()
criterion2 = nn.MSECriterion()
error = criterion1:forward(model.output[{{}, {1, 2}}], groundTruth1) + l1 * criterion2:forward(model.output[{{}, {3}}], groundTruth2) + l2 * criterion2:forward(model.output[{{}, {4}}], groundTruth3)
However, I don't think this is the correct way of doing it since I will have to do 3 separate backprop steps, one for each of the cost terms. So I wonder, can anyone give me a better solution to do this in Torch?
SplitTable and ParallelCriterion might be helpful for your problem.
Your current output layer is followed by nn.SplitTable that splits your output channels and converts your output tensor into a table. You can also combine different functions by using ParallelCriterion so that each criterion is applied on the corresponding entry of output table.
For details, I suggest you read documentation of Torch about tables.
After comments, I added the following code segment solving the original question.
M = 100
C = 4
H = 64
W = 64
dataIn = torch.rand(M, C, H, W)
layerOfTables = nn.Sequential()
-- Because SplitTable discards the dimension it is applied on, we insert
-- an additional dimension.
layerOfTables:add(nn.Reshape(M,C,1,H,W))
-- We want to split over the second dimension (i.e. channels).
layerOfTables:add(nn.SplitTable(2, 5))
-- We use ConcatTable in order to create paths accessing to the data for
-- numereous number of criterions. Each branch from the ConcatTable will
-- have access to the data (i.e. the output table).
criterionPath = nn.ConcatTable()
-- Starting from offset 1, NarrowTable will select 2 elements. Since you
-- want to use this portion as a 2 dimensional channel, we need to combine
-- then by using JoinTable. Without JoinTable, the output will be again a
-- table with 2 elements.
criterionPath:add(nn.Sequential():add(nn.NarrowTable(1, 2)):add(nn.JoinTable(2)))
-- SelectTable is simplified version of NarrowTable, and it fetches the desired element.
criterionPath:add(nn.SelectTable(3))
criterionPath:add(nn.SelectTable(4))
layerOfTables:add(criterionPath)
-- Here goes the criterion container. You can use this as if it is a regular
-- criterion function (Please see the examples on documentation page).
criterionContainer = nn.ParallelCriterion()
criterionContainer:add(nn.BCECriterion())
criterionContainer:add(nn.MSECriterion())
criterionContainer:add(nn.MSECriterion())
Since I used almost every possible table operation, it looks a little bit nasty. However, this is the only way I could solve this problem. I hope that it helps you and others suffering from the same problem. This is how the result looks like:
dataOut = layerOfTables:forward(dataIn)
print(dataOut)
{
1 : DoubleTensor - size: 100x2x64x64
2 : DoubleTensor - size: 100x1x64x64
3 : DoubleTensor - size: 100x1x64x64
}

Histogram calculation in julia-lang

refer to julia-lang documentations :
hist(v[, n]) → e, counts
Compute the histogram of v, optionally using approximately n bins. The return values are a range e, which correspond to the edges of the bins, and counts containing the number of elements of v in each bin. Note: Julia does not ignore NaN values in the computation.
I choose a sample range of data
testdata=0:1:10;
then use hist function to calculate histogram for 1 to 5 bins
hist(testdata,1) # => (-10.0:10.0:10.0,[1,10])
hist(testdata,2) # => (-5.0:5.0:10.0,[1,5,5])
hist(testdata,3) # => (-5.0:5.0:10.0,[1,5,5])
hist(testdata,4) # => (-5.0:5.0:10.0,[1,5,5])
hist(testdata,5) # => (-2.0:2.0:10.0,[1,2,2,2,2,2])
as you see when I want 1 bin it calculates 2 bins, and when I want 2 bins it calculates 3.
why does this happen?
As the person who wrote the underlying function: the aim is to get bin widths that are "nice" in terms of a base-10 counting system (i.e. 10k, 2×10k, 5×10k). If you want more control you can also specify the exact bin edges.
The key word in the doc is approximate. You can check what hist is actually doing for yourself in Julia's base module here.
When you do hist(test,3), you're actually calling
hist(v::AbstractVector, n::Integer) = hist(v,histrange(v,n))
That is, in a first step the n argument is converted into a FloatRange by the histrange function, the code of which can be found here. As you can see, the calculation of these steps is not entirely straightforward, so you should play around with this function a bit to figure out how it is constructing the range that forms the basis of the histogram.

Blocproc in matlab with two output variables

I have the following problem. I have to compute dense SIFT interest points in a very high dimensional image (182MP). When I run the code in the full image Matlab always close suddently. So I decided to run the code in image patches.
the code
I tried to use blocproc in matlab to call the c++ function that performs the dense sift interest points detection this way:
fun = #(block_struct) denseSIFT(block_struct.data, options);
[dsift , infodsift] = blockproc(ndvi,[1000 1000],fun);
where dsift is the sift descriptors (vectors) and infodsift has the information of the interest points, such as the x and y coordinates.
the problem
The problem is the fact that blocproc just allow one output, but i want both outputs. The following error is given by matlab when i run the code.
Error using blockproc
Too many output arguments.
Is there a way for me doing this?
Would it be a problem for you to "hard code" a version of blockproc?
Assuming for a moment that you can divide your image into NxM smaller images, you could loop around as follows:
bigImage = someFunction();
sz = size(bigImage);
smallSize = sz ./ [N M];
dsift = cell(N,M);
infodsift = cell(N,M);
for ii = 1:N
for jj = 1:M
smallImage = bigImage((ii-1)*smallSize(1) + (1:smallSize(1)), (jj-1)*smallSize(2) + (1:smallSize(2));
[dsift{ii,jj} infodsift{ii,jj}] = denseSIFT(smallImage, options);
end
end
The results will then be in the two cell arrays. No real need to pre-allocate, but it's tidier if you do. If the individual matrices are the same size, you can convert into a single large matrix with
dsiftFull = cell2mat(dsift);
Almost magic. This won't work if your matrices are different sizes - but then, if they are, I'm not sure you would even want to put them all in a single one (unless you decide to horzcat them).
If you do decide you want a list of "all the colums as a giant matrix", then you can do
giantMatrix = [dsift{:}];
This will return a matrix with (in your example) 128 rows, and as many columns as there were "interest points" found. It's shorthand for
giantMatrix = [dsift{1,1} dsift{2,1} dsift{3,1} ... dsift{N,M}];

Resources