I am trying to build a test project to compare the openCv solvePnP implementation with the openGv one.
the opencv is detailed here:
https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html#solvepnp
and the openGv here:
https://laurentkneip.github.io/opengv/page_how_to_use.html
Using the opencv example code, I am finding a chessboard in an image, and constructing the matching 3d points. i run the cv pnp, then set up the Gv solver. the cv pnp runs fine, and prints the values:
//rotation
-0.003040771263293328, 0.9797142824436152, -0.2003763421317906;
0.0623096853748876, 0.2001735322445355, 0.977777101438374]
//translation
[-12.06549797067309;
-9.533070368412945;
37.6825295047483]
I test by reprojecting the 3d points, and it looks good.
The Gv Pnp, however, prints nan for all values. i have tried to follow the example code, but I must be making a mistake somewhere. The code is:
int main(int argc, char **argv) {
cv::Mat matImg = cv::imread("chess.jpg");
cv::Size boardSize(8, 6);
//Construct the chessboard model
double squareSize = 2.80;
std::vector<cv::Point3f> objectPoints;
for (int i = 0; i < boardSize.height; i++) {
for (int j = 0; j < boardSize.width; j++) {
objectPoints.push_back(
cv::Point3f(double(j * squareSize), float(i * squareSize), 0));
}
}
cv::Mat rvec, tvec;
cv::Mat cameraMatrix, distCoeffs;
cv::FileStorage fs("CalibrationData.xml", cv::FileStorage::READ);
fs["cameraMatrix"] >> cameraMatrix;
fs["dist_coeffs"] >> distCoeffs;
//Found chessboard corners
std::vector<cv::Point2f> imagePoints;
bool found = cv::findChessboardCorners(matImg, boardSize, imagePoints, cv::CALIB_CB_FAST_CHECK);
if (found) {
cv::drawChessboardCorners(matImg, boardSize, cv::Mat(imagePoints), found);
//SolvePnP
cv::solvePnP(objectPoints, imagePoints, cameraMatrix, distCoeffs, rvec, tvec);
drawAxis(matImg, cameraMatrix, distCoeffs, rvec, tvec, squareSize);
}
//cv to matrix
cv::Mat R;
cv::Rodrigues(rvec, R);
std::cout << "results from cv:" << R << tvec << std::endl;
//START OPEN GV
//vars
bearingVectors_t bearingVectors;
points_t points;
rotation_t rotation;
//add points to the gv type
for (int i = 0; i < objectPoints.size(); ++i)
{
point_t pnt;
pnt.x() = objectPoints[i].x;
pnt.y() = objectPoints[i].y;
pnt.z() = objectPoints[i].z;
points.push_back(pnt);
}
/*
K is the common 3x3 camera matrix that you can compose with cx, cy, fx, and fy.
You put the image point into homogeneous form (append a 1),
multiply it with the inverse of K from the left, which gives you a normalized image point (a spatial direction vector).
You normalize that to norm 1.
*/
//to homogeneous
std::vector<cv::Point3f> imagePointsH;
convertPointsToHomogeneous(imagePoints, imagePointsH);
//multiply by K.Inv
for (int i = 0; i < imagePointsH.size(); i++)
{
cv::Point3f pt = imagePointsH[i];
cv::Mat ptMat(3, 1, cameraMatrix.type());
ptMat.at<double>(0, 0) = pt.x;
ptMat.at<double>(1, 0) = pt.y;
ptMat.at<double>(2, 0) = pt.z;
cv::Mat dstMat = cameraMatrix.inv() * ptMat;
//store as bearing vector
bearingVector_t bvec;
bvec.x() = dstMat.at<double>(0, 0);
bvec.y() = dstMat.at<double>(1, 0);
bvec.z() = dstMat.at<double>(2, 0);
bvec.normalize();
bearingVectors.push_back(bvec);
}
//create a central absolute adapter
absolute_pose::CentralAbsoluteAdapter adapter(
bearingVectors,
points,
rotation);
size_t iterations = 50;
std::cout << "running epnp (all correspondences)" << std::endl;
transformation_t epnp_transformation;
for (size_t i = 0; i < iterations; i++)
epnp_transformation = absolute_pose::epnp(adapter);
std::cout << "results from epnp algorithm:" << std::endl;
std::cout << epnp_transformation << std::endl << std::endl;
return 0;
}
Where am i going wrong in setting up the openGv Pnp solver?
Years later, i had this same issue, and solved it. To convert openCv to openGV bearing vectors, you can do this:
bearingVectors_t bearingVectors;
std::vector<cv::Point2f> dd2;
const int N1 = static_cast<int>(dd2.size());
cv::Mat points1_mat = cv::Mat(dd2).reshape(1);
// first rectify points and construct homogeneous points
// construct homogeneous points
cv::Mat ones_col1 = cv::Mat::ones(N1, 1, CV_32F);
cv::hconcat(points1_mat, ones_col1, points1_mat);
// undistort points
cv::Mat points1_rect = points1_mat * cameraMatrix.inv();
// compute bearings
points2bearings3(points1_rect, &bearingVectors);
using this function for the final conversion:
// Convert a set of points to bearing
// points Matrix of size Nx3 with the set of points.
// bearings Vector of bearings.
void points2bearings3(const cv::Mat& points,
opengv::bearingVectors_t* bearings) {
double l;
cv::Vec3f p;
opengv::bearingVector_t bearing;
for (int i = 0; i < points.rows; ++i) {
p = cv::Vec3f(points.row(i));
l = std::sqrt(p[0] * p[0] + p[1] * p[1] + p[2] * p[2]);
for (int j = 0; j < 3; ++j) bearing[j] = p[j] / l;
bearings->push_back(bearing);
}
}
I can't get normal depth map from disparity.
Here is my code:
#include "opencv2/core/core.hpp"
#include "opencv2/calib3d/calib3d.hpp"
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include "opencv2/contrib/contrib.hpp"
#include <cstdio>
#include <iostream>
#include <fstream>
using namespace cv;
using namespace std;
ofstream out("points.txt");
int main()
{
Mat img1, img2;
img1 = imread("images/im7rect.bmp");
img2 = imread("images/im8rect.bmp");
//resize(img1, img1, Size(320, 280));
//resize(img2, img2, Size(320, 280));
Mat g1,g2, disp, disp8;
cvtColor(img1, g1, CV_BGR2GRAY);
cvtColor(img2, g2, CV_BGR2GRAY);
int sadSize = 3;
StereoSGBM sbm;
sbm.SADWindowSize = sadSize;
sbm.numberOfDisparities = 144;//144; 128
sbm.preFilterCap = 10; //63
sbm.minDisparity = 0; //-39; 0
sbm.uniquenessRatio = 10;
sbm.speckleWindowSize = 100;
sbm.speckleRange = 32;
sbm.disp12MaxDiff = 1;
sbm.fullDP = true;
sbm.P1 = sadSize*sadSize*4;
sbm.P2 = sadSize*sadSize*32;
sbm(g1, g2, disp);
normalize(disp, disp8, 0, 255, CV_MINMAX, CV_8U);
Mat dispSGBMscale;
disp.convertTo(dispSGBMscale,CV_32F, 1./16);
imshow("image", img1);
imshow("disparity", disp8);
Mat Q;
FileStorage fs("Q.txt", FileStorage::READ);
fs["Q"] >> Q;
fs.release();
Mat points, points1;
//reprojectImageTo3D(disp, points, Q, true);
reprojectImageTo3D(disp, points, Q, false, CV_32F);
imshow("points", points);
ofstream point_cloud_file;
point_cloud_file.open ("point_cloud.xyz");
for(int i = 0; i < points.rows; i++) {
for(int j = 0; j < points.cols; j++) {
Vec3f point = points.at<Vec3f>(i,j);
if(point[2] < 10) {
point_cloud_file << point[0] << " " << point[1] << " " << point[2]
<< " " << static_cast<unsigned>(img1.at<uchar>(i,j)) << " " << static_cast<unsigned>(img1.at<uchar>(i,j)) << " " << static_cast<unsigned>(img1.at<uchar>(i,j)) << endl;
}
}
}
point_cloud_file.close();
waitKey(0);
return 0;
}
My images are:
Disparity map:
I get smth like this point cloud:
Q is equal:
[ 1., 0., 0., -3.2883545303344727e+02, 0., 1., 0.,
-2.3697290992736816e+02, 0., 0., 0., 5.4497170185417110e+02, 0.,
0., -1.4446083962336606e-02, 0. ]
I tried many other things. I tried with different images, but no one is able to get normal depth map.
What am I doing wrong? Should I do with reprojectImageTo3D or use other approach instead of it? What is the best way to vizualize depth map? (I tried point_cloud library)
Or could you provide me the working example with dataset and calibration info, that I could run it and get depth map. Or how can I get depth_map from middlebury stereo database (http://vision.middlebury.edu/stereo/data/), I think there isn't enough calibration info.
Edited:
Now I get smth like :
It is of course better, but still not normal.
Edited2:
I tried what you say:
Mat disp;
disp = imread("disparity-image.pgm", CV_LOAD_IMAGE_GRAYSCALE);
Mat disp64;
disp.convertTo(disp64,CV_64F, 1.0/16.0);
imshow("disp", disp);
I get this result with line cv::minMaxIdx(...) :
And this when I comment this line:
Ps: Also please could you tell me how can I calculate depth knowing only baseline and focal length in pixels.
I have made a simple comparison between OpenCV's reprojectImageTo3D() and my own (see below), and also run a test for a correct disparity and Q matrix.
// Reproject image to 3D
void customReproject(const cv::Mat& disparity, const cv::Mat& Q, cv::Mat& out3D)
{
CV_Assert(disparity.type() == CV_32F && !disparity.empty());
CV_Assert(Q.type() == CV_32F && Q.cols == 4 && Q.rows == 4);
// 3-channel matrix for containing the reprojected 3D world coordinates
out3D = cv::Mat::zeros(disparity.size(), CV_32FC3);
// Getting the interesting parameters from Q, everything else is zero or one
float Q03 = Q.at<float>(0, 3);
float Q13 = Q.at<float>(1, 3);
float Q23 = Q.at<float>(2, 3);
float Q32 = Q.at<float>(3, 2);
float Q33 = Q.at<float>(3, 3);
// Transforming a single-channel disparity map to a 3-channel image representing a 3D surface
for (int i = 0; i < disparity.rows; i++)
{
const float* disp_ptr = disparity.ptr<float>(i);
cv::Vec3f* out3D_ptr = out3D.ptr<cv::Vec3f>(i);
for (int j = 0; j < disparity.cols; j++)
{
const float pw = 1.0f / (disp_ptr[j] * Q32 + Q33);
cv::Vec3f& point = out3D_ptr[j];
point[0] = (static_cast<float>(j)+Q03) * pw;
point[1] = (static_cast<float>(i)+Q13) * pw;
point[2] = Q23 * pw;
}
}
}
Almost the same results were produced by both of the methods and they all seem correct to me. Would you please try it on your disparity map and Q matrix? You can have my test environment on my GitHub.
Note 1: also take care to do not scale twice the disparity (comment out the line disparity.convertTo(disparity, CV_32F, 1.0 / 16.0); if your disparity was also scaled.)
Note 2: it was built with OpenCV 3.0, you may have to change the includes.
As an input I have a photo of a simple symbol, e.g.: https://www.dropbox.com/s/nrmsvfd0le0bkke/symbol.jpg
I would like to detect the straight lines in it, like points of start and ends of the lines. In this case, assuming the top left of the symbol is (0,0), the lines would be defined like this:
start end (coordinates of beginning and end of a line)
1. (0,0); (0,10) (vertical line)
2. (0,10); (15, 15)
3. (15,15); (0, 20)
4. (0,20); (0,30)
How can I do it (pereferably using OpenCV)? I though about Hough lines, but they seem to be good for perfect thin straight lines, which is not the case in a drawing. I'll probably work on binarized image, too.
Give a try on this,
Apply thinning algorithm on threshold image.
Find contours.
approxPolyDP for the found contour.
See some reference:
approxpolydp-for-edge-maps
Creating Bounding boxes and circles for contours
maybe you can work on this one.
assume a perfect binarization:
run HoughLinesP
(not implemented) try to group those detected lines
I used this code:
int main()
{
cv::Mat image = cv::imread("HoughLinesP_perfect.png");
cv::Mat gray;
cv::cvtColor(image,gray,CV_BGR2GRAY);
cv::Mat output; image.copyTo(output);
cv::Mat g_thres = gray == 0;
std::vector<cv::Vec4i> lines;
//cv::HoughLinesP( binary, lines, 1, 2*CV_PI/180, 100, 100, 50 );
// cv::HoughLinesP( h_thres, lines, 1, CV_PI/180, 100, image.cols/2, 10 );
cv::HoughLinesP( g_thres, lines, 1, CV_PI/(4*180.0), 50, image.cols/20, 10 );
for( size_t i = 0; i < lines.size(); i++ )
{
cv::line( output, cv::Point(lines[i][0], lines[i][3]),
cv::Point(lines[i][4], lines[i][3]), cv::Scalar(155,255,155), 1, 8 );
}
cv::imshow("g thres", g_thres);
cv::imwrite("HoughLinesP_out.png", output);
cv::resize(output, output, cv::Size(), 0.5,0.5);
cv::namedWindow("output"); cv::imshow("output", output);
cv::waitKey(-1);
std::cout << "finished" << std::endl;
return 0;
}
EDIT:
updated code with simple line clustering (`minimum_distance function taken from SO):
giving this result:
float minimum_distance(cv::Point2f v, cv::Point2f w, cv::Point2f p) {
// Return minimum distance between line segment vw and point p
const float l2 = cv::norm(w-v) * cv::norm(w-v); // i.e. |w-v|^2 - avoid a sqrt
if (l2 == 0.0) return cv::norm(p-v); // v == w case
// Consider the line extending the segment, parameterized as v + t (w - v).
// We find projection of point p onto the line.
// It falls where t = [(p-v) . (w-v)] / |w-v|^2
//const float t = dot(p - v, w - v) / l2;
float t = ((p-v).x * (w-v).x + (p-v).y * (w-v).y)/l2;
if (t < 0.0) return cv::norm(p-v); // Beyond the 'v' end of the segment
else if (t > 1.0) return cv::norm(p-w); // Beyond the 'w' end of the segment
const cv::Point2f projection = v + t * (w - v); // Projection falls on the segment
return cv::norm(p - projection);
}
int main()
{
cv::Mat image = cv::imread("HoughLinesP_perfect.png");
cv::Mat gray;
cv::cvtColor(image,gray,CV_BGR2GRAY);
cv::Mat output; image.copyTo(output);
cv::Mat g_thres = gray == 0;
std::vector<cv::Vec4i> lines;
cv::HoughLinesP( g_thres, lines, 1, CV_PI/(4*180.0), 50, image.cols/20, 10 );
float minDist = 100;
std::vector<cv::Vec4i> lines_filtered;
for( size_t i = 0; i < lines.size(); i++ )
{
bool keep = true;
int overwrite = -1;
cv::Point2f a(lines[i][0], lines[i][6]);
cv::Point2f b(lines[i][7], lines[i][3]);
float lengthAB = cv::norm(a-b);
for( size_t j = 0; j < lines_filtered.size(); j++ )
{
cv::Point2f c(lines_filtered[j][0], lines_filtered[j][8]);
cv::Point2f d(lines_filtered[j][9], lines_filtered[j][3]);
float distCDA = minimum_distance(c,d,a);
float distCDB = minimum_distance(c,d,b);
float lengthCD = cv::norm(c-d);
if((distCDA < minDist) && (distCDB < minDist))
{
if(lengthCD >= lengthAB)
{
keep = false;
}
else
{
overwrite = j;
}
}
}
if(keep)
{
if(overwrite >= 0)
{
lines_filtered[overwrite] = lines[i];
}
else
{
lines_filtered.push_back(lines[i]);
}
}
}
for( size_t i = 0; i < lines_filtered.size(); i++ )
{
cv::line( output, cv::Point(lines_filtered[i][0], lines_filtered[i][10]),
cv::Point(lines_filtered[i][11], lines_filtered[i][3]), cv::Scalar(155,255,155), 2, 8 );
}
cv::imshow("g thres", g_thres);
cv::imwrite("HoughLinesP_out.png", output);
cv::resize(output, output, cv::Size(), 0.5,0.5);
cv::namedWindow("output"); cv::imshow("output", output);
cv::waitKey(-1);
std::cout << "finished" << std::endl;
return 0;
}
You should try the Hough Line Transform. And here is an example from this website
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
using namespace cv;
using namespace std;
int main()
{
Mat src = imread("building.jpg", 0);
Mat dst, cdst;
Canny(src, dst, 50, 200, 3);
cvtColor(dst, cdst, CV_GRAY2BGR);
vector<Vec2f> lines;
// detect lines
HoughLines(dst, lines, 1, CV_PI/180, 150, 0, 0 );
// draw lines
for( size_t i = 0; i < lines.size(); i++ )
{
float rho = lines[i][0], theta = lines[i][1];
Point pt1, pt2;
double a = cos(theta), b = sin(theta);
double x0 = a*rho, y0 = b*rho;
pt1.x = cvRound(x0 + 1000*(-b));
pt1.y = cvRound(y0 + 1000*(a));
pt2.x = cvRound(x0 - 1000*(-b));
pt2.y = cvRound(y0 - 1000*(a));
line( cdst, pt1, pt2, Scalar(0,0,255), 3, CV_AA);
}
imshow("source", src);
imshow("detected lines", cdst);
waitKey();
return 0;
}
With this you should be able to tweak and get the proprieties you are looking for (vertices).
Given a set of 2D points, how can I apply the opposite of undistortPoints?
I have the camera intrinsics and distCoeffs and would like to (for example) create a square, and distort it as if the camera had viewed it through the lens.
I have found a 'distort' patch here : http://code.opencv.org/issues/1387 but it would seem this is only good for images, I want to work on sparse points.
This question is rather old but since I ended up here from a google search without seeing a neat answer I decided to answer it anyway.
There is a function called projectPoints that does exactly this. The C version is used internally by OpenCV when estimating camera parameters with functions like calibrateCamera and stereoCalibrate
EDIT:
To use 2D points as input, we can set all z-coordinates to 1 with convertPointsToHomogeneous and use projectPoints with no rotation and no translation.
cv::Mat points2d = ...;
cv::Mat points3d;
cv::Mat distorted_points2d;
convertPointsToHomogeneous(points2d, points3d);
projectPoints(points3d, cv::Vec3f(0,0,0), cv::Vec3f(0,0,0), camera_matrix, dist_coeffs, distorted_points2d);
A simple solution is to use initUndistortRectifyMap to obtain a map from undistorted coordinates to distorted ones:
cv::Mat K = ...; // 3x3 intrinsic parameters
cv::Mat D = ...; // 4x1 or similar distortion parameters
int W = 640; // image width
int H = 480; // image height
cv::Mat mapx, mapy;
cv::initUndistortRectifyMap(K, D, cv::Mat(), K, cv::Size(W, H),
CV_32F, mapx, mapy);
float distorted_x = mapx.at<float>(y, x);
float distorted_y = mapy.at<float>(y, x);
I edit to clarify the code is correct:
I cite the documentation of initUndistortRectifyMap:
for each pixel (u, v) in the destination (corrected and rectified)
image, the function computes the corresponding coordinates in the
source image (that is, in the original image from camera.
map_x(u,v) = x''f_x + c_x
map_y(u,v) = y''f_y + c_y
undistortPoint is a simple reverse version of project points
In my case I would like to do the following:
Undistort points:
int undisortPoints(const vector<cv::Point2f> &uv, vector<cv::Point2f> &xy, const cv::Mat &M, const cv::Mat &d)
{
cv::undistortPoints(uv, xy, M, d, cv::Mat(), M);
return 0;
}
This will undistort the points to the very similar coordinate to the origin of the image, but without distortion. This is the default behavior for the cv::undistort() function.
Redistort points:
int distortPoints(const vector<cv::Point2f> &xy, vector<cv::Point2f> &uv, const cv::Mat &M, const cv::Mat &d)
{
vector<cv::Point2f> xy2;
vector<cv::Point3f> xyz;
cv::undistortPoints(xy, xy2, M, cv::Mat());
for (cv::Point2f p : xy2)xyz.push_back(cv::Point3f(p.x, p.y, 1));
cv::Mat rvec = cv::Mat::zeros(3, 1, CV_64FC1);
cv::Mat tvec = cv::Mat::zeros(3, 1, CV_64FC1);
cv::projectPoints(xyz, rvec, tvec, M, d, uv);
return 0;
}
The little tricky thing here is to first project the points to the z=1 plane with a linear camera model. After that, you must project them with the original camera model.
I found these useful, I hope it also works for you.
I have had exactly the same need.
Here is a possible solution :
void MyDistortPoints(const std::vector<cv::Point2d> & src, std::vector<cv::Point2d> & dst,
const cv::Mat & cameraMatrix, const cv::Mat & distorsionMatrix)
{
dst.clear();
double fx = cameraMatrix.at<double>(0,0);
double fy = cameraMatrix.at<double>(1,1);
double ux = cameraMatrix.at<double>(0,2);
double uy = cameraMatrix.at<double>(1,2);
double k1 = distorsionMatrix.at<double>(0, 0);
double k2 = distorsionMatrix.at<double>(0, 1);
double p1 = distorsionMatrix.at<double>(0, 2);
double p2 = distorsionMatrix.at<double>(0, 3);
double k3 = distorsionMatrix.at<double>(0, 4);
//BOOST_FOREACH(const cv::Point2d &p, src)
for (unsigned int i = 0; i < src.size(); i++)
{
const cv::Point2d &p = src[i];
double x = p.x;
double y = p.y;
double xCorrected, yCorrected;
//Step 1 : correct distorsion
{
double r2 = x*x + y*y;
//radial distorsion
xCorrected = x * (1. + k1 * r2 + k2 * r2 * r2 + k3 * r2 * r2 * r2);
yCorrected = y * (1. + k1 * r2 + k2 * r2 * r2 + k3 * r2 * r2 * r2);
//tangential distorsion
//The "Learning OpenCV" book is wrong here !!!
//False equations from the "Learning OpenCv" book
//xCorrected = xCorrected + (2. * p1 * y + p2 * (r2 + 2. * x * x));
//yCorrected = yCorrected + (p1 * (r2 + 2. * y * y) + 2. * p2 * x);
//Correct formulae found at : http://www.vision.caltech.edu/bouguetj/calib_doc/htmls/parameters.html
xCorrected = xCorrected + (2. * p1 * x * y + p2 * (r2 + 2. * x * x));
yCorrected = yCorrected + (p1 * (r2 + 2. * y * y) + 2. * p2 * x * y);
}
//Step 2 : ideal coordinates => actual coordinates
{
xCorrected = xCorrected * fx + ux;
yCorrected = yCorrected * fy + uy;
}
dst.push_back(cv::Point2d(xCorrected, yCorrected));
}
}
void MyDistortPoints(const std::vector<cv::Point2d> & src, std::vector<cv::Point2d> & dst,
const cv::Matx33d & cameraMatrix, const cv::Matx<double, 1, 5> & distorsionMatrix)
{
cv::Mat cameraMatrix2(cameraMatrix);
cv::Mat distorsionMatrix2(distorsionMatrix);
return MyDistortPoints(src, dst, cameraMatrix2, distorsionMatrix2);
}
void TestDistort()
{
cv::Matx33d cameraMatrix = 0.;
{
//cameraMatrix Init
double fx = 1000., fy = 950.;
double ux = 324., uy = 249.;
cameraMatrix(0, 0) = fx;
cameraMatrix(1, 1) = fy;
cameraMatrix(0, 2) = ux;
cameraMatrix(1, 2) = uy;
cameraMatrix(2, 2) = 1.;
}
cv::Matx<double, 1, 5> distorsionMatrix;
{
//distorsion Init
const double k1 = 0.5, k2 = -0.5, k3 = 0.000005, p1 = 0.07, p2 = -0.05;
distorsionMatrix(0, 0) = k1;
distorsionMatrix(0, 1) = k2;
distorsionMatrix(0, 2) = p1;
distorsionMatrix(0, 3) = p2;
distorsionMatrix(0, 4) = k3;
}
std::vector<cv::Point2d> distortedPoints;
std::vector<cv::Point2d> undistortedPoints;
std::vector<cv::Point2d> redistortedPoints;
distortedPoints.push_back(cv::Point2d(324., 249.));// equals to optical center
distortedPoints.push_back(cv::Point2d(340., 200));
distortedPoints.push_back(cv::Point2d(785., 345.));
distortedPoints.push_back(cv::Point2d(0., 0.));
cv::undistortPoints(distortedPoints, undistortedPoints, cameraMatrix, distorsionMatrix);
MyDistortPoints(undistortedPoints, redistortedPoints, cameraMatrix, distorsionMatrix);
cv::undistortPoints(redistortedPoints, undistortedPoints, cameraMatrix, distorsionMatrix);
//Poor man's unit test ensuring we have an accuracy that is better than 0.001 pixel
for (unsigned int i = 0; i < undistortedPoints.size(); i++)
{
cv::Point2d dist = redistortedPoints[i] - distortedPoints[i];
double norm = sqrt(dist.dot(dist));
std::cout << "norm = " << norm << std::endl;
assert(norm < 1E-3);
}
}
For those still searching, here is a simple python function that will distort points back:
def distortPoints(undistortedPoints, k, d):
undistorted = np.float32(undistortedPoints[:, np.newaxis, :])
kInv = np.linalg.inv(k)
for i in range(len(undistorted)):
srcv = np.array([undistorted[i][0][0], undistorted[i][0][1], 1])
dstv = kInv.dot(srcv)
undistorted[i][0][0] = dstv[0]
undistorted[i][0][1] = dstv[1]
distorted = cv2.fisheye.distortPoints(undistorted, k, d)
return distorted
Example:
undistorted = np.array([(639.64, 362.09), (234, 567)])
distorted = distortPoints(undistorted, camK, camD)
print(distorted)
This question and it's related questions on SO have been around for nearly a decade, but there still isn't an answer that satisfies the criteria below so I'm proposing a new answer that
uses methods readily available in OpenCV,
works for points, not images, (and also points at subpixel locations),
can be used beyond fisheye distortion models,
does not involve manual interpolation or maps and
can be used in the context of rectification
Preliminaries
It is important to distinquish between ideal coordinates (also called 'normalized' or 'sensor' coordinates) which are the input variables to the distortion model or 'x' and 'y' in the OpenCV docs vs. observed coordinates (also called 'image' coordinates) or 'u' and 'v' in OpenCV docs. Ideal coordinates have been normalized by the intrinsic parameters so that they have been scaled by the focal length and are relative to the image centroid at (cx,cy). This is important to point out because the undistortPoints() method can return either ideal or observed coordinates depending on the input arguments.
undistortPoints() can essentially do any combination of two things: remove distortions and apply a rotational transformation with the output either being in ideal or observed coordinates, depending on if a projection mat (InputArray P) is provided in the input. The input coordinates (InputArray src) for undistortPoints() is always in observed or image coordinates.
At a high level undistortPoints() converts the input coordinates from observed to ideal coordinates and uses an iterative process to remove distortions from the ideal or normalized points. The reason the process is iterative is because the OpenCV distortion model is not easy to invert analytically.
In the example below, we use undistortPoints() twice. First, we apply a reverse rotational transformation to undo image rectification. This step can be skipped if you are not working with rectified images. The output of this first step is in observed coordinates so we use undistortPoints() again to convert these to ideal coordinates. The conversion to ideal coordinates makes setting up the input for projectPoints() easier (which we use to apply the distortions). With the ideal coordinates, we can simply convert them to homogeneous by appending a 1 to each point. This is equivalent to projecting the points to a plane in 3D world coordinates with a linear camera model.
As of currently, there isn't a method in OpenCV to apply distortions to a set of ideal coordinates (with the exception of fisheye distortions using distort()) so we employ the projectPoints() method which can apply distortions as well as transformations as part of its projection algorithm. The tricky part about using projectPoints() is that the input is in terms of world or model coordinates in 3D, which is why we homogenized the output of the second use of undistortPoints(). By using projectPoints() with a dummy, zero-valued rotation vector (InputArray rvec) and translation vector (Input Array tvec) the result is simply a distorted set of coordinates which is conveniently output in observed or image coordinates.
Some helpful links
Difference between undistortPoints() and projectPoints() in OpenCV
https://docs.opencv.org/3.4/d9/d0c/group__calib3d.html#ga1019495a2c8d1743ed5cc23fa0daff8c
https://docs.opencv.org/3.4/da/d54/group__imgproc__transform.html#ga55c716492470bfe86b0ee9bf3a1f0f7e
Re-distort points with camera intrinsics/extrinsics
https://stackoverflow.com/questions/28678985/exact-definition-of-the-matrices-in-opencv-stereorectify#:~:text=Normally%20the%20definition%20of%20a,matrix%20with%20the%20extrinsic%20parameters
https://docs.opencv.org/4.x/db/d58/group__calib3d__fisheye.html#ga75d8877a98e38d0b29b6892c5f8d7765
https://docs.opencv.org/3.4/d9/d0c/group__calib3d.html#ga617b1685d4059c6040827800e72ad2b6
Does OpenCV's undistortPoints also rectify them?
Removing distortions in rectified image coordinates
Before providing the solution to recovering the original image coordinates with distortions we provide a short snippet to convert from the original distorted image coordinates to the corresponding rectified, undistorted coordinates that can be used for testing the reverse solution below.
The rotation matrix R1 and the projection matrix P1 come from stereoRectify(). The intrinsic parameters M1 and distortion parameters D1 come from stereoCalibrate().
const size_t img_w = 2448;
const size_t img_h = 2048;
const size_t num_rand_pts = 100;
// observed coordinates of the points in the original
// distorted image (used as a benchmark for testing)
std::vector<cv::Point2f> benchmark_obs_dist_points;
// undistorted and rectified obnserved coordinates
std::vector<cv::Point2f> obs_rect_undist_points;
// initialize with uniform random numbers
cv::RNG rng( 0xFFFFFFFF );
for(size_t i =0;i<num_rand_pts;++i)
benchmark_obs_dist_points.push_back(
cv::Point2f(rng.uniform(0.0,(double)img_w),
rng.uniform(0.0,(double)img_h))
);
// undistort and rectify
cv::undistortPoints(benchmark_obs_dist_points,obs_rect_undist_points,
M1,D1,R1,P1);
Re-distorting and unrectifying points to recover the original image coordinates
We will need three mats to reverse the rectification: the inverse of the rectification rotation matrix from stereoRectify R1, and two others to 'swap' the P1 and M1 projections that happen in undistortPoints(). P1_prime is the rotation matrix sub-portion of the projection matrix and M1_prime converts the rectification rotation matrix into a projection matrix with no translation. Note this only works if the output of stereoRectify has no translation, i.e. the last column of P1 is zeros which can be easily verified.
assert(cv::norm(P1(cv::Rect(3,0,1,3))==0.0));
// create a 3x3 shallow copy of the rotation matrix portion of the projection P1
cv::Mat P1_prime = P1(cv::Rect(0,0,3,3));
// create a 3x4 projection matrix with the rotation portion of
// the rectification rotation matrix R1
cv::Mat M1_prime = cv::Mat::zeros(3,4,CV_64F);
M1.copyTo(M1_prime(cv::Rect(0,0,3,3)));
With these mats, the reversal can proceed as follows
// reverse the image rectification transformation
// (result will still be undistorted)
std::vector<cv::Point2f> obs_undist_points;
cv::undistortPoints(obs_rect_undist_points,obs_undist_points,
P1_prime,cv::Mat(),R1.inv(),M1_prime);
// convert the image coordinates into sensor or normalized or ideal coordinates
// (again, still undistorted)
std::vector<cv::Point2f> ideal_undist_points;
cv::undistortPoints(obs_undist_points,ideal_undist_points,M1,cv::Mat());
// artificially project the ideal 2d points to a plane in world coordinates
// using a linear camera model (z=1)
std::vector<cv::Point3f> world_undist_points;
for (cv::Point2f pt : ideal_undist_points)
world_undist_points.push_back(cv::Point3f(pt.x,pt.y,1));
// add the distortions back in to get the original coordinates
cv::Mat rvec = cv::Mat::zeros(3,1,CV_64FC1); // dummy zero rotation vec
cv::Mat tvec = cv::Mat::zeros(3,1,CV_64FC1); // dummy zero translation vec
std::vector<cv::Point2f> obs_dist_points;
cv::projectPoints(world_undist_points,rvec,tvec,M1,D1,obs_dist_points);
To test the results, we can compare them to the benchmark values
for(size_t i=0;i<num_rand_pts;++i)
std::cout << "benchmark_x: " << benchmark_obs_dist_points[i].x
<< " benchmark_y: " << benchmark_obs_dist_points[i].y
<< " computed_x: " << obs_dist_points[i].x
<< " computed_y: " << obs_dist_points[i].y
<< " diff_x: "
<< std::abs(benchmark_obs_dist_points[i].x-obs_dist_points[i].x)
<< " diff_y: "
<< std::abs(benchmark_obs_dist_points[i].y-obs_dist_points[i].y)
<< std::endl;
This is main.cpp. It is self-sufficient and does not need anything else but opencv. I don't remember where I found this, it works, I used it in my project. The program eats the set of standard chessboard images and generates json/xml files with all the distortions of the camera.
#include <iostream>
#include <sstream>
#include <time.h>
#include <stdio.h>
#include <opencv2/core/core.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/calib3d/calib3d.hpp>
#include <opencv2/highgui/highgui.hpp>
#ifndef _CRT_SECURE_NO_WARNINGS
# define _CRT_SECURE_NO_WARNINGS
#endif
using namespace cv;
using namespace std;
static void help()
{
cout << "This is a camera calibration sample." << endl
<< "Usage: calibration configurationFile" << endl
<< "Near the sample file you'll find the configuration file, which has detailed help of "
"how to edit it. It may be any OpenCV supported file format XML/YAML." << endl;
}
class Settings
{
public:
Settings() : goodInput(false) {}
enum Pattern { NOT_EXISTING, CHESSBOARD, CIRCLES_GRID, ASYMMETRIC_CIRCLES_GRID };
enum InputType {INVALID, CAMERA, VIDEO_FILE, IMAGE_LIST};
void write(FileStorage& fs) const //Write serialization for this class
{
fs << "{" << "BoardSize_Width" << boardSize.width
<< "BoardSize_Height" << boardSize.height
<< "Square_Size" << squareSize
<< "Calibrate_Pattern" << patternToUse
<< "Calibrate_NrOfFrameToUse" << nrFrames
<< "Calibrate_FixAspectRatio" << aspectRatio
<< "Calibrate_AssumeZeroTangentialDistortion" << calibZeroTangentDist
<< "Calibrate_FixPrincipalPointAtTheCenter" << calibFixPrincipalPoint
<< "Write_DetectedFeaturePoints" << bwritePoints
<< "Write_extrinsicParameters" << bwriteExtrinsics
<< "Write_outputFileName" << outputFileName
<< "Show_UndistortedImage" << showUndistorsed
<< "Input_FlipAroundHorizontalAxis" << flipVertical
<< "Input_Delay" << delay
<< "Input" << input
<< "}";
}
void read(const FileNode& node) //Read serialization for this class
{
node["BoardSize_Width" ] >> boardSize.width;
node["BoardSize_Height"] >> boardSize.height;
node["Calibrate_Pattern"] >> patternToUse;
node["Square_Size"] >> squareSize;
node["Calibrate_NrOfFrameToUse"] >> nrFrames;
node["Calibrate_FixAspectRatio"] >> aspectRatio;
node["Write_DetectedFeaturePoints"] >> bwritePoints;
node["Write_extrinsicParameters"] >> bwriteExtrinsics;
node["Write_outputFileName"] >> outputFileName;
node["Calibrate_AssumeZeroTangentialDistortion"] >> calibZeroTangentDist;
node["Calibrate_FixPrincipalPointAtTheCenter"] >> calibFixPrincipalPoint;
node["Input_FlipAroundHorizontalAxis"] >> flipVertical;
node["Show_UndistortedImage"] >> showUndistorsed;
node["Input"] >> input;
node["Input_Delay"] >> delay;
interprate();
}
void interprate()
{
goodInput = true;
if (boardSize.width <= 0 || boardSize.height <= 0)
{
cerr << "Invalid Board size: " << boardSize.width << " " << boardSize.height << endl;
goodInput = false;
}
if (squareSize <= 10e-6)
{
cerr << "Invalid square size " << squareSize << endl;
goodInput = false;
}
if (nrFrames <= 0)
{
cerr << "Invalid number of frames " << nrFrames << endl;
goodInput = false;
}
if (input.empty()) // Check for valid input
inputType = INVALID;
else
{
if (input[0] >= '0' && input[0] <= '9')
{
stringstream ss(input);
ss >> cameraID;
inputType = CAMERA;
}
else
{
if (readStringList(input, imageList))
{
inputType = IMAGE_LIST;
nrFrames = (nrFrames < (int)imageList.size()) ? nrFrames : (int)imageList.size();
}
else
inputType = VIDEO_FILE;
}
if (inputType == CAMERA)
inputCapture.open(cameraID);
if (inputType == VIDEO_FILE)
inputCapture.open(input);
if (inputType != IMAGE_LIST && !inputCapture.isOpened())
inputType = INVALID;
}
if (inputType == INVALID)
{
cerr << " Inexistent input: " << input << endl;
goodInput = false;
}
flag = 0;
if(calibFixPrincipalPoint) flag |= CV_CALIB_FIX_PRINCIPAL_POINT;
if(calibZeroTangentDist) flag |= CV_CALIB_ZERO_TANGENT_DIST;
if(aspectRatio) flag |= CV_CALIB_FIX_ASPECT_RATIO;
calibrationPattern = NOT_EXISTING;
if (!patternToUse.compare("CHESSBOARD")) calibrationPattern = CHESSBOARD;
if (!patternToUse.compare("CIRCLES_GRID")) calibrationPattern = CIRCLES_GRID;
if (!patternToUse.compare("ASYMMETRIC_CIRCLES_GRID")) calibrationPattern = ASYMMETRIC_CIRCLES_GRID;
if (calibrationPattern == NOT_EXISTING)
{
cerr << " Inexistent camera calibration mode: " << patternToUse << endl;
goodInput = false;
}
atImageList = 0;
}
Mat nextImage()
{
Mat result;
if( inputCapture.isOpened() )
{
Mat view0;
inputCapture >> view0;
view0.copyTo(result);
}
else if( atImageList < (int)imageList.size() )
result = imread(imageList[atImageList++], CV_LOAD_IMAGE_COLOR);
return result;
}
static bool readStringList( const string& filename, vector<string>& l )
{
l.clear();
FileStorage fs(filename, FileStorage::READ);
if( !fs.isOpened() )
return false;
FileNode n = fs.getFirstTopLevelNode();
if( n.type() != FileNode::SEQ )
return false;
FileNodeIterator it = n.begin(), it_end = n.end();
for( ; it != it_end; ++it )
l.push_back((string)*it);
return true;
}
public:
Size boardSize; // The size of the board -> Number of items by width and height
Pattern calibrationPattern;// One of the Chessboard, circles, or asymmetric circle pattern
float squareSize; // The size of a square in your defined unit (point, millimeter,etc).
int nrFrames; // The number of frames to use from the input for calibration
float aspectRatio; // The aspect ratio
int delay; // In case of a video input
bool bwritePoints; // Write detected feature points
bool bwriteExtrinsics; // Write extrinsic parameters
bool calibZeroTangentDist; // Assume zero tangential distortion
bool calibFixPrincipalPoint;// Fix the principal point at the center
bool flipVertical; // Flip the captured images around the horizontal axis
string outputFileName; // The name of the file where to write
bool showUndistorsed; // Show undistorted images after calibration
string input; // The input ->
int cameraID;
vector<string> imageList;
int atImageList;
VideoCapture inputCapture;
InputType inputType;
bool goodInput;
int flag;
private:
string patternToUse;
};
static void read(const FileNode& node, Settings& x, const Settings& default_value = Settings())
{
if(node.empty())
x = default_value;
else
x.read(node);
}
enum { DETECTION = 0, CAPTURING = 1, CALIBRATED = 2 };
bool runCalibrationAndSave(Settings& s, Size imageSize, Mat& cameraMatrix, Mat& distCoeffs,
vector<vector<Point2f> > imagePoints );
int main(int argc, char* argv[])
{
// help();
Settings s;
const string inputSettingsFile = argc > 1 ? argv[1] : "default.xml";
FileStorage fs(inputSettingsFile, FileStorage::READ); // Read the settings
if (!fs.isOpened())
{
cout << "Could not open the configuration file: \"" << inputSettingsFile << "\"" << endl;
return -1;
}
fs["Settings"] >> s;
fs.release(); // close Settings file
if (!s.goodInput)
{
cout << "Invalid input detected. Application stopping. " << endl;
return -1;
}
vector<vector<Point2f> > imagePoints;
Mat cameraMatrix, distCoeffs;
Size imageSize;
int mode = s.inputType == Settings::IMAGE_LIST ? CAPTURING : DETECTION;
clock_t prevTimestamp = 0;
const Scalar RED(0,0,255), GREEN(0,255,0);
const char ESC_KEY = 27;
for(int i = 0;;++i)
{
Mat view;
bool blinkOutput = false;
view = s.nextImage();
//----- If no more image, or got enough, then stop calibration and show result -------------
if( mode == CAPTURING && imagePoints.size() >= (unsigned)s.nrFrames )
{
if( runCalibrationAndSave(s, imageSize, cameraMatrix, distCoeffs, imagePoints))
mode = CALIBRATED;
else
mode = DETECTION;
}
if(view.empty()) // If no more images then run calibration, save and stop loop.
{
if( imagePoints.size() > 0 )
runCalibrationAndSave(s, imageSize, cameraMatrix, distCoeffs, imagePoints);
break;
}
imageSize = view.size(); // Format input image.
if( s.flipVertical ) flip( view, view, 0 );
vector<Point2f> pointBuf;
bool found;
switch( s.calibrationPattern ) // Find feature points on the input format
{
case Settings::CHESSBOARD:
found = findChessboardCorners( view, s.boardSize, pointBuf,
CV_CALIB_CB_ADAPTIVE_THRESH | CV_CALIB_CB_FAST_CHECK | CV_CALIB_CB_NORMALIZE_IMAGE);
break;
case Settings::CIRCLES_GRID:
found = findCirclesGrid( view, s.boardSize, pointBuf );
break;
case Settings::ASYMMETRIC_CIRCLES_GRID:
found = findCirclesGrid( view, s.boardSize, pointBuf, CALIB_CB_ASYMMETRIC_GRID );
break;
default:
found = false;
break;
}
if ( found) // If done with success,
{
// improve the found corners' coordinate accuracy for chessboard
if( s.calibrationPattern == Settings::CHESSBOARD)
{
Mat viewGray;
cvtColor(view, viewGray, COLOR_BGR2GRAY);
cornerSubPix( viewGray, pointBuf, Size(11,11),
Size(-1,-1), TermCriteria( CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 30, 0.1 ));
}
if( mode == CAPTURING && // For camera only take new samples after delay time
(!s.inputCapture.isOpened() || clock() - prevTimestamp > s.delay*1e-3*CLOCKS_PER_SEC) )
{
imagePoints.push_back(pointBuf);
prevTimestamp = clock();
blinkOutput = s.inputCapture.isOpened();
}
// Draw the corners.
drawChessboardCorners( view, s.boardSize, Mat(pointBuf), found );
}
//----------------------------- Output Text ------------------------------------------------
string msg = (mode == CAPTURING) ? "100/100" :
mode == CALIBRATED ? "Calibrated" : "Press 'g' to start";
int baseLine = 0;
Size textSize = getTextSize(msg, 1, 1, 1, &baseLine);
Point textOrigin(view.cols - 2*textSize.width - 10, view.rows - 2*baseLine - 10);
if( mode == CAPTURING )
{
if(s.showUndistorsed)
msg = format( "%d/%d Undist", (int)imagePoints.size(), s.nrFrames );
else
msg = format( "%d/%d", (int)imagePoints.size(), s.nrFrames );
}
putText( view, msg, textOrigin, 1, 1, mode == CALIBRATED ? GREEN : RED);
if( blinkOutput )
bitwise_not(view, view);
//------------------------- Video capture output undistorted ------------------------------
if( mode == CALIBRATED && s.showUndistorsed )
{
Mat temp = view.clone();
undistort(temp, view, cameraMatrix, distCoeffs);
}
//------------------------------ Show image and check for input commands -------------------
imshow("Image View", view);
char key = (char)waitKey(s.inputCapture.isOpened() ? 50 : s.delay);
if( key == ESC_KEY )
break;
if( key == 'u' && mode == CALIBRATED )
s.showUndistorsed = !s.showUndistorsed;
if( s.inputCapture.isOpened() && key == 'g' )
{
mode = CAPTURING;
imagePoints.clear();
}
}
// -----------------------Show the undistorted image for the image list ------------------------
if( s.inputType == Settings::IMAGE_LIST && s.showUndistorsed )
{
Mat view, rview, map1, map2;
initUndistortRectifyMap(cameraMatrix, distCoeffs, Mat(),
getOptimalNewCameraMatrix(cameraMatrix, distCoeffs, imageSize, 1, imageSize, 0),
imageSize, CV_16SC2, map1, map2);
for(int i = 0; i < (int)s.imageList.size(); i++ )
{
view = imread(s.imageList[i], 1);
if(view.empty())
continue;
remap(view, rview, map1, map2, INTER_LINEAR);
imshow("Image View", rview);
char c = (char)waitKey();
if( c == ESC_KEY || c == 'q' || c == 'Q' )
break;
}
}
return 0;
}
static double computeReprojectionErrors( const vector<vector<Point3f> >& objectPoints,
const vector<vector<Point2f> >& imagePoints,
const vector<Mat>& rvecs, const vector<Mat>& tvecs,
const Mat& cameraMatrix , const Mat& distCoeffs,
vector<float>& perViewErrors)
{
vector<Point2f> imagePoints2;
int i, totalPoints = 0;
double totalErr = 0, err;
perViewErrors.resize(objectPoints.size());
for( i = 0; i < (int)objectPoints.size(); ++i )
{
projectPoints( Mat(objectPoints[i]), rvecs[i], tvecs[i], cameraMatrix,
distCoeffs, imagePoints2);
err = norm(Mat(imagePoints[i]), Mat(imagePoints2), CV_L2);
int n = (int)objectPoints[i].size();
perViewErrors[i] = (float) std::sqrt(err*err/n);
totalErr += err*err;
totalPoints += n;
}
return std::sqrt(totalErr/totalPoints);
}
static void calcBoardCornerPositions(Size boardSize, float squareSize, vector<Point3f>& corners,
Settings::Pattern patternType /*= Settings::CHESSBOARD*/)
{
corners.clear();
switch(patternType)
{
case Settings::CHESSBOARD:
case Settings::CIRCLES_GRID:
for( int i = 0; i < boardSize.height; ++i )
for( int j = 0; j < boardSize.width; ++j )
corners.push_back(Point3f(float( j*squareSize ), float( i*squareSize ), 0));
break;
case Settings::ASYMMETRIC_CIRCLES_GRID:
for( int i = 0; i < boardSize.height; i++ )
for( int j = 0; j < boardSize.width; j++ )
corners.push_back(Point3f(float((2*j + i % 2)*squareSize), float(i*squareSize), 0));
break;
default:
break;
}
}
static bool runCalibration( Settings& s, Size& imageSize, Mat& cameraMatrix, Mat& distCoeffs,
vector<vector<Point2f> > imagePoints, vector<Mat>& rvecs, vector<Mat>& tvecs,
vector<float>& reprojErrs, double& totalAvgErr)
{
cameraMatrix = Mat::eye(3, 3, CV_64F);
if( s.flag & CV_CALIB_FIX_ASPECT_RATIO )
cameraMatrix.at<double>(0,0) = 1.0;
distCoeffs = Mat::zeros(8, 1, CV_64F);
vector<vector<Point3f> > objectPoints(1);
calcBoardCornerPositions(s.boardSize, s.squareSize, objectPoints[0], s.calibrationPattern);
objectPoints.resize(imagePoints.size(),objectPoints[0]);
//Find intrinsic and extrinsic camera parameters
double rms = calibrateCamera(objectPoints, imagePoints, imageSize, cameraMatrix,
distCoeffs, rvecs, tvecs, s.flag|CV_CALIB_FIX_K4|CV_CALIB_FIX_K5);
cout << "Re-projection error reported by calibrateCamera: "<< rms << endl;
bool ok = checkRange(cameraMatrix) && checkRange(distCoeffs);
totalAvgErr = computeReprojectionErrors(objectPoints, imagePoints,
rvecs, tvecs, cameraMatrix, distCoeffs, reprojErrs);
return ok;
}
// Print camera parameters to the output file
static void saveCameraParams( Settings& s, Size& imageSize, Mat& cameraMatrix, Mat& distCoeffs,
const vector<Mat>& rvecs, const vector<Mat>& tvecs,
const vector<float>& reprojErrs, const vector<vector<Point2f> >& imagePoints,
double totalAvgErr )
{
FileStorage fs( s.outputFileName, FileStorage::WRITE );
time_t tm;
time( &tm );
struct tm *t2 = localtime( &tm );
char buf[1024];
strftime( buf, sizeof(buf)-1, "%c", t2 );
fs << "calibration_Time" << buf;
if( !rvecs.empty() || !reprojErrs.empty() )
fs << "nrOfFrames" << (int)std::max(rvecs.size(), reprojErrs.size());
fs << "image_Width" << imageSize.width;
fs << "image_Height" << imageSize.height;
fs << "board_Width" << s.boardSize.width;
fs << "board_Height" << s.boardSize.height;
fs << "square_Size" << s.squareSize;
if( s.flag & CV_CALIB_FIX_ASPECT_RATIO )
fs << "FixAspectRatio" << s.aspectRatio;
if( s.flag )
{
sprintf( buf, "flags: %s%s%s%s",
s.flag & CV_CALIB_USE_INTRINSIC_GUESS ? " +use_intrinsic_guess" : "",
s.flag & CV_CALIB_FIX_ASPECT_RATIO ? " +fix_aspectRatio" : "",
s.flag & CV_CALIB_FIX_PRINCIPAL_POINT ? " +fix_principal_point" : "",
s.flag & CV_CALIB_ZERO_TANGENT_DIST ? " +zero_tangent_dist" : "" );
cvWriteComment( *fs, buf, 0 );
}
fs << "flagValue" << s.flag;
fs << "Camera_Matrix" << cameraMatrix;
fs << "Distortion_Coefficients" << distCoeffs;
fs << "Avg_Reprojection_Error" << totalAvgErr;
if( !reprojErrs.empty() )
fs << "Per_View_Reprojection_Errors" << Mat(reprojErrs);
if( !rvecs.empty() && !tvecs.empty() )
{
CV_Assert(rvecs[0].type() == tvecs[0].type());
Mat bigmat((int)rvecs.size(), 6, rvecs[0].type());
for( int i = 0; i < (int)rvecs.size(); i++ )
{
Mat r = bigmat(Range(i, i+1), Range(0,3));
Mat t = bigmat(Range(i, i+1), Range(3,6));
CV_Assert(rvecs[i].rows == 3 && rvecs[i].cols == 1);
CV_Assert(tvecs[i].rows == 3 && tvecs[i].cols == 1);
//*.t() is MatExpr (not Mat) so we can use assignment operator
r = rvecs[i].t();
t = tvecs[i].t();
}
cvWriteComment( *fs, "a set of 6-tuples (rotation vector + translation vector) for each view", 0 );
fs << "Extrinsic_Parameters" << bigmat;
}
if( !imagePoints.empty() )
{
Mat imagePtMat((int)imagePoints.size(), (int)imagePoints[0].size(), CV_32FC2);
for( int i = 0; i < (int)imagePoints.size(); i++ )
{
Mat r = imagePtMat.row(i).reshape(2, imagePtMat.cols);
Mat imgpti(imagePoints[i]);
imgpti.copyTo(r);
}
fs << "Image_points" << imagePtMat;
}
}
bool runCalibrationAndSave(Settings& s, Size imageSize, Mat& cameraMatrix, Mat& distCoeffs,vector<vector<Point2f> > imagePoints )
{
vector<Mat> rvecs, tvecs;
vector<float> reprojErrs;
double totalAvgErr = 0;
bool ok = runCalibration(s,imageSize, cameraMatrix, distCoeffs, imagePoints, rvecs, tvecs,
reprojErrs, totalAvgErr);
cout << (ok ? "Calibration succeeded" : "Calibration failed")
<< ". avg re projection error = " << totalAvgErr ;
if( ok )
saveCameraParams( s, imageSize, cameraMatrix, distCoeffs, rvecs ,tvecs, reprojErrs,
imagePoints, totalAvgErr);
return ok;
}