How to interface Z3 with a database backend? - z3

I would like to use Z3 to reason about a configuration problem using some data from a relational database containing physical properties of materials.
As suggested in this post, I could use an outer loop around the solver. But this works only for sorts with finite domains: I don't see how it would work on infinite domains.
I could represent the whole data tables by Z3 functions from primary keys to attributes, using the if-then-else construct, but the reasoning might use only a few rows in the table: it does not seem efficient.
Another approach would be to create a custom background theory solver that would determine the truth values of atoms by database lookup : has that been done before ?
Do you see some other ways to do it ?

Related

Is there a way in SumoLogic to store some data and use it in queries?

I have a list of IPs that I want to filter out of many queries that I have in sumo logic. Is there a way to store that list of IPs somewhere so it can be referenced, instead of copy pasting it in every query?
For example, in a perfect world it would be nice to define a list of things like:
things=foo,bar,baz
And then in another query reference it:
where mything IN things
Right now I'm just copying/pasting. I think there may be a way to do this by setting up a custom data source and putting the IPs in there, but that seems like a very round-about way of doing it, and wouldn't help to re-use parts of a query that aren't data (eg re-use statements). Also their template feature is about parameterizing a query, not re-use across many queries.
Yes. There's a notion of Lookup Tables in Sumo Logic. Consult:
https://help.sumologic.com/docs/search/lookup-tables/create-lookup-table/
for details.
It allows to store some values (either manually once, or in a scheduled way as as a result of some query) with | save operator.
And then you can refer to these values using | lookup which is conceptually similar to SQL's JOIN.
Disclaimer: I am currently employed by Sumo Logic.

Normalizing data in Redshift

I've recently started using Redshift for housing millions of data points with a schema that looks like the following:
create table metrics (
name varchar(100),
value decimal(18,4),
time timestamp
) sortkey (name, timestamp);
(The real schema is a bit more complex, but this will satisfy for my question)
I'm wondering if it makes sense to normalize my metric name (currently varchar(100)) by mapping it to an integer and only storing only the integer. (e.g. {id: 1, name: metric1}). The cardinality for name is ~100. By adding a mapping, it would make the application logic quite a bit more complex since it has many streams of input. Also, querying it ahead of time would require reverse mapping.
In a traditional sql database, this would be an obvious YES, but I'm not certain how Redshift handles this as it's a columnar data store. I think it would be nice to have in general, but I would assume that Redshift would/could do some similar mapping underneath the hood since certain columns in any table have lower cardinality than others.
The answer is no. Redshift makes excellent use of compression and will store very few duplicates of your name field.
However you do need to ensure that you are making good use of Redshift's compression options. This section in the docs should tell you all you need to know: http://docs.aws.amazon.com/redshift/latest/dg/t_Compressing_data_on_disk.html
TL;DR: Run ANALYZE COMPRESSION on your table to see what compression Redshift recommends, create a new table using those encodings, and insert your data into that table.
Your best option is to continue to use the varchar data type, as you have here, but apply the "bytedict" compression type. Internally, this is the same as creating a lookup table, but it could actually be faster, since Redshift natively understands a manages it's own table and maps from int->string internally during column decoding.
Here is the bytedict doc reference:
http://docs.aws.amazon.com/redshift/latest/dg/c_Byte_dictionary_encoding.html
Another option that could give you good performance/storage savings for your use cases is runlength:
http://docs.aws.amazon.com/redshift/latest/dg/c_Runlength_encoding.html

Mnesia: time and space efficiency of read, match_object, select, and qlc queries

Mnesia has four methods of reading from database: read, match_object, select, qlc. Besides their dirty counterparts of course. Each of them is more expressive than previous ones.
Which of them use indices?
Given the query in one of this methods will the same queries in more expressive methods be less efficient by time/memory usage? How much?
UPD.
As I GIVE CRAP ANSWERS mentioned, read is just a key-value lookup, but after a while of exploration I found also functions index_read and index_write, which work in the same manner but use indices instead of primary key.
One at a time, though from memory:
read always uses a Key-lookup on the keypos. It is basically the key-value lookup.
match_object and select will optimize the query if it can on the keypos key. That is, it only uses that key for optimization. It never utilizes further index types.
qlc has a query-compiler and will attempt to use additional indexes if possible, but it all depends on the query planner and if it triggers. erl -man qlc has the details and you can ask it to output its plan.
Mnesia tables are basically key-value maps from terms to terms. Usually, this means that if the key part is something the query can latch onto and use, then it is used. Otherwise, you will be looking at a full-table scan. This may be expensive, but do note that the scan is in-memory and thus usually fairly fast.
Also, take note of the table type: set is a hash-table and can't utilize a partial key match. ordered_set is a tree and can do a partial match:
Example - if we have a key {Id, Timestamp}, querying on {Id, '_'} as the key is reasonably fast on an ordered_set because the lexicographic ordering means we can utilize the tree for a fast walk. This is equivalent of specifying a composite INDEX/PRIMARY KEY in a traditional RDBMS.
If you can arrange data such that you can do simple queries without additional indexes, then that representation is preferred. Also note that additional indexes are implemented as bags, so if you have many matches for an index, then it is very inefficient. In other words, you should probably not index on a position in the tuples where there are few distinct values. It is better to index on things with many different (mostly) distinct values, like an e-mail address for a user-column for instance.

Tinkerpop Blueprints Vertex Query

I've been researching the Tinkerpop stack for quite a while. I think I have a good idea of what it can do and what databases it works well with. I've got a couple of different databases I'm thinking about right now, but haven't decided on a definite. So I've decided to write my code purely to the interfaces, and not take into account any implementation right now. Out of the databases I'm looking at, they implement TransactionalGraph and KeyIndexableGraph. I think that's good enough for what I need, but I have just one question.
I have different 'classes' of vertices. Using Blueprints, I believe that's best representable by having a field in each vertex containing the class name. Doing that, I can do something like graph.getVertices("classname", "User") and it would give me all of the user vertices. And since the getVertices function specifies that an implementation should make use of indexes, I'm guaranteed to get a fast lookup (if I index that field).
But let's say that I wanted to retrieve a vertex based on two properties. The vertex must have className=Users and username=admin. What's the best way to go about finding that single vertex? And is it possible to index over both of those properties, even though not all vertices will have a username field?
FYI - The databases I'm currently thinking of are OrientDB, Neo4j and Titan, but I haven't decided for sure yet. I'm also currently planning to use Gremlin if that helps at all.
Using a "class" or a "type" for vertices is a good way to segment them. Doing:
graph.createKeyIndex("classname",Vertex.class);
graph.getVertices("classname", "User");
is a pretty common pattern and should generally yield a fast lookup, though iterating an index of tens of millions of users might not be so great (if you intend to grow a particular classname to very big size). I think that leads to the second part of your question, in regards to doing a two property lookup.
Taking your example on the surface, the two element lookup would be something like (using Gremlin):
g.V('classname',"User").has('username','admin')
So, you narrow the vertices to just "User" vertices with a key index and then filter those for "admin". But, I'd model this differently. It would be even less expensive to simply do:
graph.createKeyIndex("username",Vertex.class);
graph.getVertices("username", "admin");
or in Gremlin:
g.V('username','admin')
If you know the username you want, there's no better/faster way to model this. You really only need the classname if you want to iterate over all "User" vertices. If you just want to find one (or a set of vertices with that username) then key indexing on that property is the better way.
Even if I don't create a key index on it, I still include a type or classname property on all vertices. I find it helpful in global operations where I may or may not care about speed, but just need an answer.
graph.getVertices() will iterate through all vertexes and look for ones with that property if you do not have the auto-index turned on in your graph implementation. If you already have data and cannot just turn on the auto-indexer, you should use is index = indexableGraph.getIndex() and then index.get('classname', 'User')
It's possible to perform a query over multiple objects, but without specifics, it's hard to say. For Neo4j they use Lucene, which means that query() will take a lucene query, such as className:Users AND username:admin, but I cannot speak for the others.
Yeah of those DB is good for playing with, I personally found neo4j to be the easiest, and as long as you understand their licensing structure, you shouldn't have any problems using them.

Composite primary keys versus unique object ID field

I inherited a database built with the idea that composite keys are much more ideal than using a unique object ID field and that when building a database, a single unique ID should never be used as a primary key. Because I was building a Rails front-end for this database, I ran into difficulties getting it to conform to the Rails conventions (though it was possible using custom views and a few additional gems to handle composite keys).
The reasoning behind this specific schema design from the person who wrote it had to do with how the database handles ID fields in a non-efficient manner and when it's building indexes, tree sorts are flawed. This explanation lacked any depth and I'm still trying to wrap my head around the concept (I'm familiar with using composite keys, but not 100% of the time).
Can anyone offer opinions or add any greater depth to this topic?
Most of the commonly used engines (MS SQL Server, Oracle, DB2, MySQL, etc.) would not experience noticeable issues using a surrogate key system. Some may even experience a performance boost from the use of a surrogate, but performance issues are highly platform-specific.
In general terms, the natural key (and by extension, composite key) verses surrogate key debate has a long history with no likely “right answer” in sight.
The arguments for natural keys (singular or composite) usually include some the following:
1) They are already available in the data model. Most entities being modeled already include one or more attributes or combinations of attributes that meet the needs of a key for the purposes of creating relations. Adding an additional attribute to each table incorporates an unnecessary redundancy.
2) They eliminate the need for certain joins. For example, if you have customers with customer codes, and invoices with invoice numbers (both of which are "natural" keys), and you want to retrieve all the invoice numbers for a specific customer code, you can simply use "SELECT InvoiceNumber FROM Invoice WHERE CustomerCode = 'XYZ123'". In the classic surrogate key approach, the SQL would look something like this: "SELECT Invoice.InvoiceNumber FROM Invoice INNER JOIN Customer ON Invoice.CustomerID = Customer.CustomerID WHERE Customer.CustomerCode = 'XYZ123'".
3) They contribute to a more universally-applicable approach to data modeling. With natural keys, the same design can be used largely unchanged between different SQL engines. Many surrogate key approaches use specific SQL engine techniques for key generation, thus requiring more specialization of the data model to implement on different platforms.
Arguments for surrogate keys tend to revolve around issues that are SQL engine specific:
1) They enable easier changes to attributes when business requirements/rules change. This is because they allow the data attributes to be isolated to a single table. This is primarily an issue for SQL engines that do not efficiently implement standard SQL constructs such as DOMAINs. When an attribute is defined by a DOMAIN statement, changes to the attribute can be performed schema-wide using an ALTER DOMAIN statement. Different SQL engines have different performance characteristics for altering a domain, and some SQL engines do not implement DOMAINS at all, so data modelers compensate for these situations by adding surrogate keys to improve the ability to make changes to attributes.
2) They enable easier implementations of concurrency than natural keys. In the natural key case, if two users are concurrently working with the same information set, such as a customer row, and one of the users modifies the natural key value, then an update by the second user will fail because the customer code they are updating no longer exists in the database. In the surrogate key case, the update will process successfully because immutable ID values are used to identify the rows in the database, not mutable customer codes. However, it is not always desirable to allow the second update – if the customer code changed it is possible that the second user should not be allowed to proceed with their change because the actual “identity” of the row has changed – the second user may be updating the wrong row. Neither surrogate keys nor natural keys, by themselves, address this issue. Comprehensive concurrency solutions have to be addressed outside of the implementation of the key.
3) They perform better than natural keys. Performance is most directly affected by the SQL engine. The same database schema implemented on the same hardware using different SQL engines will often have dramatically different performance characteristics, due to the SQL engines data storage and retrieval mechanisms. Some SQL engines closely approximate flat-file systems, where data is actually stored redundantly when the same attribute, such as a Customer Code, appears in multiple places in the database schema. This redundant storage by the SQL engine can cause performance issues when changes need to be made to the data or schema. Other SQL engines provide a better separation between the data model and the storage/retrieval system, allowing for quicker changes of data and schema.
4) Surrogate keys function better with certain data access libraries and GUI frameworks. Due to the homogeneous nature of most surrogate key designs (example: all relational keys are integers), data access libraries, ORMs, and GUI frameworks can work with the information without needing special knowledge of the data. Natural keys, due to their heterogeneous nature (different data types, size etc.), do not work as well with automated or semi-automated toolkits and libraries. For specialized scenarios, such as embedded SQL databases, designing the database with a specific toolkit in mind may be acceptable. In other scenarios, databases are enterprise information resources, accessed concurrently by multiple platforms, applications, report systems, and devices, and therefore do not function as well when designed with a focus on any particular library or framework. In addition, databases designed to work with specific toolkits become a liability when the next great toolkit is introduced.
I tend to fall on the side of natural keys (obviously), but I am not fanatical about it. Due to the environment I work in, where any given database I help design may be used by a variety of applications, I use natural keys for the majority of the data modeling, and rarely introduce surrogates. However, I don’t go out of my way to try to re-implement existing databases that use surrogates. Surrogate-key systems work just fine – no need to change something that is already functioning well.
There are some excellent resources discussing the merits of each approach:
http://www.google.com/search?q=natural+key+surrogate+key
http://www.agiledata.org/essays/keys.html
http://www.informationweek.com/news/software/bi/201806814
I've been developing database applications for 15 years and I have yet to come across a case where a non-surrogate key was a better choice than a surrogate key.
I'm not saying that such a case does not exist, I'm just saying when you factor in the practical issues of actually developing an application that accesses the database, usually the benefits of a surrogate key start to overwhelm the theoretical purity of non-surrogate keys.
the primary key should be constant and meaningless; non-surrogate keys usually fail one or both requirements, eventually
if the key is not constant, you have a future update issue that can get quite complicated
if the key is not meaningless, then it is more likely to change, i.e. not be constant; see above
take a simple, common example: a table of Inventory items. It may be tempting to make the item number (sku number, barcode, part code, or whatever) the primary key, but then a year later all the item numbers change and you're left with a very messy update-the-whole-database problem...
EDIT: there's an additional issue that is more practical than philosophical. In many cases you're going to find a particular row somehow, then later update it or find it again (or both). With composite keys there is more data to keep track of and more contraints in the WHERE clause for the re-find or update (or delete). It is also possible that one of the key segments may have changed in the meantime!. With a surrogate key, there is always only one value to retain (the surrogate ID) and by definition it cannot change, which simplifies the situation significantly.
It sounds like the person who created the database is on the natural keys side of the great natural keys vs. surrogate keys debate.
I've never heard of any problems with btrees on ID fields, but I also haven't studied it in any great depth...
I fall on the surrogate key side: You have less repetition when using a surrogate key, because you're only repeating a single value in the other tables. Since humans rarely join tables by hand, we don't care if it's a number or not. Also, since there's only one fixed-size column to look up in the index, it's safe to assume surrogates have a faster lookup time by primary key as well.
Using 'unique (object) ID' fields simplifies joins, but you should aim to have the other (possibly composite) key still unique -- do NOT relax the not-null constraints and DO maintain the unique constraint.
If the DBMS can't handle unique integers effectively, it has big problems. However, using both a 'unique (object) ID' and the other key does use more space (for the indexes) than just the other key, and has two indexes to update on each insert operation. So it isn't a freebie -- but as long as you maintain the original key, too, then you'll be OK. If you eliminate the other key, you are breaking the design of your system; all hell will break loose eventually (and you might or might not spot that hell broke loose).
I basically am a member of the surrogate key team, and even if I appreciate and understand arguments such as the ones presented here by JeremyDWill, I am still looking for the case where "natural" key is better than surrogate ...
Other posts dealing with this issue usually refer to relational database theory and database performance. Another interesting argument, always forgotten in this case, is related to table normalisation and code productivity:
each time I create a table, shall I
lose time
identifying its primary key and its
physical characteristics (type,
size)
remembering these characteristics
each time I want to refer to it in
my code?
explaining my PK choice to other
developers in the team?
My answer is no to all of these questions:
I have no time to lose trying to
identify "the best Primary Key" when
dealing with a list of persons.
I do not want to remember that the
Primary Key of my "computer" table
is a 64 characters long string (does
Windows accepts that many characters
for a computer name?).
I don't want to explain my choice to
other developers, where one of them
will finally say "Yeah man, but
consider that you have to manage
computers over different domains?
Does this 64 characters string allow
you to store the domain name + the
computer name?".
So I've been working for the last five years with a very basic rule: each table (let's call it 'myTable') has its first field called 'id_MyTable' which is of uniqueIdentifier type. Even if this table supports a "many-to-many" relation, such as a 'ComputerUser' table, where the combination of 'id_Computer' and 'id_User' forms a very acceptable Primary Key, I prefer to create this 'id_ComputerUser' field being a uniqueIdentifier, just to stick to the rule.
The major advantage is that you don't have to care animore about the use of Primary Key and/or Foreign Key within your code. Once you have the table name, you know the PK name and type. Once you know which links are implemented in your data model, you'll know the name of available foreign keys in the table.
I am not sure that my rule is the best one. But it is a very efficient one!
A practical approach to developing a new architecture is one that utilizes surrogate keys for tables that will contain thousands of multi-column highly unique records and composite keys for short descriptionary tables. I usually find that the colleges dictate the use of surrogate keys while the real world programmers prefer composite keys. You really need to apply the right type of primary key to the table - not just one way or the other.
using natural keys makes a nightmare using any automatic ORM as persistence layer. Also, foreign keys on multiple column tend to overlap one another and this will give further problem when navigating and updating the relationship in a OO way.
Still you could transform the natural key in an unique constrain and add an auto generated id; this doesn't remove the problem with the foreign keys, though, those will have to be changed by hand; hopefully multiple columns and overlapping constraints will be a minority of all the relationship, so you could concentrate on refactoring where it matter most.
natural pk have their motivation and usages scenario and are not a bad thing(tm), they just tend to not get along well with ORM.
my feeling is that as any other concepts, natural keys and table normalization should be used when sensible and not as blind design constraints
I'm going to be short and sweet here: Composite primary keys are not good these days. Add in surrogate arbitrary keys if you can and maintain the current key schemes via unique constraints. ORM is happy, you're happy, original programmer not-so-happy but unless he's your boss then he can just deal with it.
Composite keys can be good - they may affect performance - but they are not the only answer, in much the same way that a unique (surrogate) key isn't the only answer.
What concerns me is the vagueness in the reasoning for choosing composite keys. More often than not vagueness about anything technical indicates a lack of understanding - maybe following someone else's guidelines, in a book or article....
There is nothing wrong with a single unique ID - infact if you've got an application connected to a database server and you can choose which database you're using it will all be good, and you can pretty much do anything with your keys and not really suffer too badly.
There has been, and will be, a lot written about this, because there is no single answer. There are methods and approaches that need to be applied carefully in a skilled manner.
I've had lots of problems with ID's being provided automatically by the database - and I avoid them wherever possible, but still use them occasionally.
... how the database handles ID fields in a non-efficient manner and when it's building indexes, tree sorts are flawed ...
This was almost certainly nonsense, but may have related to the issue of index block contention when assigning incrementing numbers to a PK at a high rate from different sessions. If so then the REVERSE KEY index is there to help, albeit at the expense of a larger index size due to a change in block-split algorithm. http://download.oracle.com/docs/cd/B19306_01/server.102/b14220/schema.htm#sthref998
Go synthetic, particularly if it aids more rapid development with your toolset.
I am not a experienced one but still i m in favor of Using primary key as id here is the explanation using an example..
The format of external data may change over time. For example, you might think that the ISBN of a book would make a good primary key in a table of books. After all, ISBNs are unique. But as this particular book is being written, the publishing industry in the United States is gearing up for a major change as additional digits are added to all ISBNs.
If we’d used the ISBN as the primary key in a table of books, we’d have to update each row to reflect this change. But then we’d have another problem. There’ll be other tables in the database that reference rows in the books table via the primary key. We can’t change the key in the books table unless we first go through and update all of these references. And that will involve dropping foreign key constraints, updating tables, updating the books table, and finally reestablishing the constraints. All in all, this is something of a pain.
The problems go away if we use our own internal value as a primary key. No third party can come along and arbitrarily tell us to change our schema—we control our own keyspace. And if something such as the ISBN does need to change, it can change without affecting any of the existing relationships in the database. In effect, we’ve decoupled the knitting together of rows from the external representation of data in those rows.
Although the explanation is quite bookish but i think it explains the things in a simpler way.
#JeremyDWill
Thank you for providing some much-needed balance to the debate. In particular, thanks for the info on DOMAINs.
I actually use surrogate keys system-wide for the sake of consistency, but there are tradeoffs involved. The most common cause for me to curse using surrogate keys is when I have a lookup table with a short list of canonical values—I'd use less space and all my queries would be shorter/easier/faster if I had just made the values the PK instead of having to join to the table.
You can do both - since any big company database is likely to be used by several applications, including human DBAs running one-off queries and data imports, designing it purely for the benefit of ORM systems is not always practical or desirable.
What I tend to do these days is to add a "RowID" property to each table - this field is a GUID, and so unique to each row. This is NOT the primary key - that is a natural key (if possible). However, any ORM layers working on top of this database can use the RowID to identify their derived objects.
Thus you might have:
CREATE TABLE dbo.Invoice (
CustomerId varchar(10),
CustomerOrderNo varchar(10),
InvoiceAmount money not null,
Comments nvarchar(4000),
RowId uniqueidentifier not null default(newid()),
primary key(CustomerId, CustomerOrderNo)
)
So your DBA is happy, your ORM architect is happy, and your database integrity is preserved!
I just wanted to add something here that I don't ever see covered when discussing auto-generated integer identity fields with relational databases (because I see them a lot), and that is, it's base type can an will overflow at some point.
Now I'm not trying to say this automatically makes composite ids the way to go, but it's just a matter of fact that even though more data could be logically added to a table (which is still unique), the single auto-generated integer identity could prevent this from happening.
Yes I realize that for most situations it's unlikely, and using a 64bit integer gives you lots of headroom, and realistically the database probably should have been designed differently if an overflow like this ever occurred.
But that doesn't prevent someone from doing it... a table using a single auto-generated 32bit integer as it's identity, which is expected to store all transactions at a global level for a particular fast-food company, is going fail as soon as it tries to insert it's 2,147,483,648th transaction (and that is a completely feasible scenario).
It's just something to note, that people tend to gloss over or just ignore entirely. If any table is going to be inserted into with regularity, considerations should be made to just how often and how much data will accumulate over time, and whether or not an integer based identifier should even be used.

Resources