Limitations for JRules decision table - ilog

What is the maximum number of rows that are permitted while designing a decision table? Is there any difference with execution speed if a single decision table is split in to multiple ones with same pre conditions?

There is no limit on maximum number rows in decision tables. And yes number of rows in decision table impact the performance. It takes too much time even for compilation of decision table with more rows. While execution it will run through all the entries in Decision table. So it is usually recommended not to use more than 200 rows. Splitting of decision table is better idea. But rather than simple splitting if we can use some filters (say State in a,b,c in Decision Table 1 / State e,f,g in Decision Table 2)in precondition to narrow down our search criteria.

Related

Archiving Records: Partitioning, Additional Table, or Status Flag

I'm working on an application where a lot of records need to be archived. For example, in the case of a task, n number hours after it's been marked complete, it becomes read-only. The frontend client queries for "Active" tasks or "Archived" tasks, but never both mixed together. I'm wondering what the ideal way of storing the archived task records would be as, over time, they will greatly outnumber the "Active" tasks.
I'm interested mainly in preventing the "Active" task query from coming in contact with a bunch of archived tasks and taking a performance hit.
Is flagging / indexing an archived: boolean column enough? I was also thinking of partitioning / moving them into their own archived_tasks table for total separation, but I'm not sure that's necessary. Any other ideas?
Extra info: Also filtering based on a foreign key for the current user.
"The cardinality of an index is the number of unique values within it. Your database table may have a billion rows in it, but if it only has 8 unique values among those rows, your cardinality is very low.
A low cardinality index is not a major efficiency gain. Most SQL indexes are binary search trees (B-Trees). Versus a serial scan of every row in a table to find matching constraints, a B-Tree logarithmically reduces the number of comparisons that have to be made. The gains from executing a search against a B-Tree are very low when the size of the tree is small.
So putting an index on a Boolean field? Or an enumerated value field? A cardinality of a very small number of distinct values among a very large number of rows will not yield noticeable efficiency gains. Save your database indexes for fields with very high cardinality to ensure the gains from scanning a B-Tree are largest versus sequential scans."
-- Joshua Ginsberg, Chief Architect, Red Hat.
More about this topic, http://www.ovaistariq.net/733/understanding-btree-indexes-and-how-they-impact-performance/#.W2gT1H6YPEY

Fact table design guidance for 100s of facts

I'm trying to create a datamart for the healthcare application. The facts in the datamart are basically going to be measurements and findings related to heart, and we have 100s of them. Starting from 1000 and can go to as big as 20000 per exam type.
I'm wondering what my design choices for the fact tables are:
Grain: 1 row per patient per exam type.
Some of the choices that I can think of -
1) A big wide fact table with 1000 or more columns.
2) EAV based design - A separate Measure dimension table. This foreign key will go into the fact table and the measure value will be in fact table. So the grain of the fact table will be changed to 1 row per patient per exam type per measurement.
3) Create smaller multiple fact tables per exam type per some other criteria like subgroup. But the end user is going to query across subgroups for that exam type and fact-fact join is not recommended.
4) any other ideas?
Any inputs would be appreciated.
1. A big wide fact table with 1000 or more columns.
One very wide fact table gives end-user maximum flexibility if queries are executed directly in the data warehouse. However some considerations should be taken into account, as you might hit some limits depending on a platform.
SQL Server 2014 limits are as per below:
Bytes per row 8,060. A row-overflow storage might be a solution, however it supports only few column types typically not related to fact nature, i.e. varchar, nvarchar, varbinary, sql_variant. Also not supported in In-Memory OLTP. https://technet.microsoft.com/en-us/library/ms186981(v=sql.105).aspx
Columns per non-wide table 1024. Wide-tables and sparse columns are solution as columns per wide table limit is 30,000. However the same Bytes per row limit applies. https://technet.microsoft.com/en-us/library/cc280604(v=sql.120).aspx
Columns per SELECT/INSERT/UPDATE statement 4,096
Non-clustered indexes per table 999
https://technet.microsoft.com/en-us/library/ms143432(v=sql.120).aspx
2. EAV based design - A separate Measure dimension table. This foreign key will go into the fact table and the measure value will be in fact table. So the grain of the fact table will be changed to 1 row per patient per exam type per measurement.
According to Kimball, EAV design is called Fact Normalization. It may make sense when a number of measurements is extremely lengthy, but sparsely populated for a given fact and no computations are made between facts.
Because facts are normalized therefore:
Extensibility is very easy, i.e. it's easy to add new measurements without the need to amend the data structure.
It's good to extract all measurements for one exam and present measurements as rows on the screen.
It's hard to extract/aggregate/make computation between several measurements (e.g. average HDL to CHOL ration) and present measurements/aggregates/computations as columns, i.e. requires complex WHERE/PIVOTING or multi-joins. SQL makes it difficult to make computations between facts in different rows.
If primary end-user platform is an OLAP cube then Fact Normalization makes sense. The cubes allows to make computation across any dimension.
Data importing could be an issue if data format is in a flat style CSV.
This questions is also discussed here Should I use EAV model?.
3) Create smaller multiple fact tables per exam type per some other criteria like subgroup. But the end user is going to query across subgroups for that exam type and fact-fact join is not recommended.
In some scenarios multiple smaller fact tables perfectly makes sense. One of the reason is if you hit some physical limits set by platform, e.g. Bytes per row.
The facts could be grouped either by subject area, e.g. measurement group/subgroup, or by frequency of usage. Each table could be placed on a separate file group and drive to maximize I/O.
Further, you could duplicate measurements across different fact tables to reduce the need of fact tables join, i.e. put one measurement in a specific measurement subgroup fact table and in frequently used measurement fact table.
However some considerations should be taken into account if there are some specific requirements for data loading. For example, if a record errors out in your ETL to one fact table, you might want to make sure that the corresponding records in the other fact tables are deleted and staged to your error table so you don't end up with any bogus information. This is especially true if end users have their own calculations in the front end tool.
If you use OLAP cubes then multiple fact tables actually becomes a source of a measure group to a specific fact table.
In terms of fact-to-fact join, you (BI application) should never issue SQL that joins two fact tables together across the fact table’s foreign keys. Instead, the technique of Drilling Across two fact tables should be used, where the answer sets from two or more fact tables are separately created, and the results sort-merged on the common row header attribute values to produce the correct result.
More on this topic: http://www.kimballgroup.com/2003/04/the-soul-of-the-data-warehouse-part-two-drilling-across/
4) any other ideas?
SQL XML or some kind NoSQL could be an option, but the same querying / aggregation / computation / presentation issues exist.

Regression when size of explanatory variables differ in length/size

What is generally considered the correct approach when you are performing a regression and your training data contains 'incidents' of some sort, but there may be a varying number of these items per training line?
To give you an example - suppose I wanted to predict the likelihood of accidents on a number of different roads. For each road, I may have a history multiple accidents and each accident will have its own different attributes (date (how recent), number of casualties, etc). How does one encapsulate all this information on one line?
You could for example assume a maximum of (say) ten and include the details of each as a separate input (date1, NoC1, date2, NoC2, etc....) but the problem is we want each item to be treated similarly and the model will treat items in column 4 as fundamentally separate from those in column 2 above, which it should not.
Alternatively we could include one row for each incident, but then any other columns in each row which are not related to these 'incidents' (such as age of road, width, etc) will be included multiple times and hence produce bias in the results.
What is the standard method that is use to accomplish this?
Many thanks

DB Selection and Modeling Time Series Data with Ad-Hoc queries

I have to develop a system for tracking/monitoring performance in a cellular network.
The domain includes a set of hierarchical elements, and each one has an associated set of counters that are reported periodically (every 15 minutes). The system should collect these counter values (available as large XML files) and periodically aggregate them on two dimensions: Time (from 15 to hour and from hour to day) and Hierarchy (lower level to higher level elements). The aggregation is most often a simple SUM but sometime requires average/min/max etc. Of course for the element dimension aggregation it needs to group by the hierarchy (group all children to one parent record). The user should be able to define and view KPIs (Key Performance Indicator) - that is, some calculations on the various counters. The KPI could be required for just one element, for several elements (producing a data-series for each) or as an aggregation for several elements (resulting in one data series of aggregated data.
There will be about 10-15 users to the system with probably 20-30 queries an hour. The query response time should be a few seconds (up to 10-15 for very large reports including many elements and long time period).
In high level, this is the flow:
Parse and Input Counter Data - there is a set of XML files which contains a periodical update of counters data for the elements. The size of all files is about 4GB / 15 minutes (so roughly 400GB/day).
Hourly Aggregation - once an hour all the collected counters, for all the elements should be aggregated - every 4 records related to an element are aggregated into one hourly record which should be stored.
Daily Aggregation - once a day, 2 all collected counters, for all elements should be aggregated - every 24 records related to an element are aggregated into one daily record.
Element Aggregation - with each one of the time-dimension aggregation it is possibly required to aggregate along the hierarchy of the elements - all records of child elements are aggregated into one record for the parent element.
KPI Definitions - there should be some way for the user to define a KPI. The KPI is a definition of a calculation based on counters from the same granularity (Time dimension). The calculation could (and will) involved more than one element level (e.g. p1.counter1 + sum(c1.counter1) where p1 is a parent of one or more records in c1).
User Interaction - the user can select one or more elements and one or more counters/KPIs, the granularity to use, the time period to view and whether or not to aggregate the selected data.
In case of aggregation, the results is one data-series that include the "added up" values for all the selected elements for each relevant point in time. In "SQL":
SELECT p1.time SUM(p1.counter1) / SUM(p1.counter2) * SUM(c1.counter1)
FROM p1_hour p1, c1_hour c1
WHERE p1.time > :minTime and p1.time < :maxTime AND p1.id in :id_list and join
GROUP BY p1.time
In case there is no aggregation need to keep the identifiers from p1 and have a data-series for each selected element
SELECT p1.time, p1.id, SUM(p1.counter1) / SUM(p1.counter2) * SUM(c1.counter1)
FROM p1_hour p1, c1_hour c1
WHERE p1.time > :minTime and p1.time < :maxTime AND p1.id in :id_list and join
The system has to keep data for 10, 100 and 1000 days for 15-min, hour and daily records. Following is a size estimate considering integer only columns at 4 bytes for storage with 400 counters for elements of type P, 50 for elements of type C and 400 for type GP:
As it adds up, I assume the based on DDL (in reality, DBs optimize storage) to 3.5-4 TB of data plus probably about 20-30% extra which will be required for indexes. For the child "tables", can get close to 2 billion records per table.
It is worth noting that from time to time I would like to add counters (maybe every 2-3 month) as the network evolves.
I once implemented a very similar system (though probably with less data) using Oracle. This time around I may not use a commercial DB and must revert to open source solutions. Also with the increase popularity of no-SQL and dedicated time-series DBs, maybe relational is not the way to go?
How would you approach such development? What are the products that could be used?
From a few days of research, I came up with the following
Use MySQL / PostGres
InfluxDB (or a similar product)
Cassandra + Spark
Others?
How could each solution would be used and what would be the advantages/disadvantages for each approach? If you can, elaborate or suggest also the overall (hardware) architecture to support this kind of development.
Comments and suggestions are welcome - preferably from people with hands on experience with similar project.
Going with Open Source RDBMS:
Using MySQL or Postgres
The table structure would be (imaginary SQL):
CREATE TABLE LEVEL_GRANULARITY (
TIMESTAMP DATE,
PARENT_ID INT,
ELEMENT_ID INT,
COUNTER_1 INT
...
COUNTER_N INT
PRIMARY_KEY (TIMESTAMP, PARENT_ID, ELEMENT_ID)
)
For example we will have P1_HOUR, GP_HOUR, P_DAY, GP_DAY etc.
The tables could be partitions by date to enhance query time and ease data management (can remove whole partitions).
To facilitate fast load, use loaders provided with the DB - these loaders are usually faster and insert data in bulks.
Aggregation could be done quite easily with `SELECT ... INTO ...' query (since the scope of the aggregation is limited, I don't think it will be a problem).
Queries are straight forward as aggregation, grouping and joining is built in. I am not sure about the query performance considering how large the tables are.
Since it is a write intensive I don't think the clustering could help here.
Pros:
Simple configuration (assuming no clusters etc).
SQL query capabilities - flexible
Cons:
Query performance - will it work?
Management overhead
Rigid Schema
Scaling?
Using InfluxDB (or something like that):
I have not used this DB and writing from playing around with it some
The model would be to create a time-series for every element in every level and granularity.
The data series name will include the identifiers of the element and the granularity.
For example P.P_ElementID.G.15MIN or P.P_ElementID.C.C1_ELEMENT_ID.G.60MIN
The data series will contain all the counters relevant for that level.
The input has to parse the XML and build the data series name before inserting the new data points.
InfluxDB has an SQL like query language. and allows to specify the calculation in an SQL like manner. It also supports grouping. To group by element would be possible by using regular expression, e.g. SELECT counter1/counter2 FROM /^P\.P_ElementID\.C1\..*G\.15MIN/ to get all children of ElementID.
There is a notion of grouping by time in general it is made for this kind of data.
Pros:
Should be fast
Support queries etc very similar to SQL
Support Deleting by Date (but have to do it on every series...)
Flexible Schema
Cons:
* Currently, seems not to support clusters very easily (
* Clusters = more maintenance
* Can it support millions of data-series (and still work fast)
* Less common, less documented (currently)

Low cardinality Dimensions in Datawarehouse

I've a bunch of columns in my fact tables that have a very low cardinality (~8). Each of these columns store keys that refer to a master table. I'm wondering whether to import each of these individual master tables as dimension or do I store the values directly in the fact table. Master tables have no additional attributes except the value I'm trying to store. What are the pros and cons of each approach ?
This seems to be a classic example of a junk dimension that combines together a number of miscellaneous, low-cardinality flags and indicators (instead of putting each of them in a separate dimension table).
Disadvantages of other approaches:
Putting every low cardinality attribute in a separate, dedicated dimension could result in an overly complex model with excessive number of dimension tables (centipede fact tables).
Storing the attributes directly in the fact table is allowed but reserved only for degenerate dimensions, i.e. values like order or invoice numbers, retail point-of-sale transaction numbers - high-cardinality values that don't have any additional attributes describing them.
Low-cardinality flags are not DDs, because even though they may consist of a sole key now, they may easily have additional attributes in the future, e.g. multiple descriptive captions for reports - short for mobile users and long for desktop users.
Details: Design Tip #113 Creating, Using, and Maintaining Junk Dimensions

Resources