get_feature_names for each label - machine-learning

I'm new to machine learning, started with multilable Text classification. I'm able to classify the new data based on trained modle. however some lables are miss predicted.
f
I want to see the weightage of the tokens or may be called features used for L1 and L2.
or example there are two lables L1 and L2. new records are associated to L1 but they are predicted as L2, these 2 have similar tokens with few difference.
My question to all is , can I see the features mapped by tfidfvectorizer to L1 and L2.something like below using get_feature_names() and 'Y' variables.
L1(hockey)-- 'ball','ground','net','stick'
L2(cricket)-- 'ball','ground','stick','stumps'

Related

Transforming Features to increase similarity

I have a large dataset (~20,000 samples x 2,000 features-- each sample w/ a corresponding y-value) that I'm constructing a regression ML model for.
The input vectors are bitvectors with either 1s or 0s at each position.
Interestingly, I have noticed that when I 'randomly' select N samples such that their y-values are between two arbitrary values A and B (such that B-A is much smaller than the total range of values in y), the subsequent model is much better at predicting other values with the A-->B range not used in the training of the model.
However, the overall similarity of the input X vectors for these values are in no way more similar than any random selection of X values across the whole dataset.
Is there an available method to transform the input X-vectors such that those with more similar y-values are "closer" (I'm not particular the methodology, but it could be something like cosine similarity), and those with not similar y-values are separated?
After more thought, I believe this question can be re-framed as a supervised clustering problem. What might be able to accomplish this might be as simple as:
import umap
print(df.shape)
>> (23,312, 2149)
print(len(target))
>> 23,312
embedding = umap.UMAP().fit_transform(df, y=target)

Learning a Sin function

I'm new to Machine Learning
I' building a simple model that would be able to predict simple sin function
I generated some sin values, and feeding them into my model.
from math import sin
xs = np.arange(-10, 40, 0.1)
squarer = lambda t: sin(t)
vfunc = np.vectorize(squarer)
ys = vfunc(xs)
model= Sequential()
model.add(Dense(units=256, input_shape=(1,), activation="tanh"))
model.add(Dense(units=256, activation="tanh"))
..a number of layers here
model.add(Dense(units=256, activation="tanh"))
model.add(Dense(units=1))
model.compile(optimizer="sgd", loss="mse")
model.fit(xs, ys, epochs=500, verbose=0)
I then generate some test data, which overlays my learning data, but also introduces some new data
test_xs = np.arange(-15, 45, 0.01)
test_ys = model.predict(test_xs)
plt.plot(xs, ys)
plt.plot(test_xs, test_ys)
Predicted data and learning data looks as follows. The more layers I add, the more curves network is able to learn, but the training process increases.
Is there a way to make it predict sin for any number of curves? Preferably with a small number of layers.
With a fully connected network I guess you won't be able to get arbitrarily long sequences, but with an RNN it looks like people have achieved this. A google search will pop up many such efforts, I found this one quickly: http://goelhardik.github.io/2016/05/25/lstm-sine-wave/
An RNN learns a sequence based on a history of inputs, so it's designed to pick up these kinds of patterns.
I suspect the limitation you observed is akin to performing a polynomial fit. If you increase the degree of polynomial you can better fit a function like this, but a polynomial can only represent a fixed number of inflection points depending on the degree you choose. Your observation here appears the same. As you increase layers you add more non-linear transitions. However, you are limited by a fixed number of layers you chose as the architecture in a fully connected network.
An RNN does not work on the same principals because it maintains a state and can make use of the state being passed forward in the sequence to learn the pattern of a single period of the sine wave and then repeat that pattern based on the state information.

Decision tree completeness and unclassified data

I made a program that trains a decision tree built on the ID3 algorithm using an information gain function (Shanon entropy) for feature selection (split).
Once I trained a decision tree I tested it to classify unseen data and I realized that some data instances cannot be classified: there is no path on the tree that classifies the instance.
An example (this is an illustration example but I encounter the same problem with a larger and more complex data set):
Being f1 and f2 the predictor variables (features) and y the categorical variable, the values ranges are:
f1: [a1; a2; a3]
f2: [b1; b2; b3]
y : [y1; y2; y3]
Training data:
("a1", "b1", "y1");
("a1", "b2", "y2");
("a2", "b3", "y3");
("a3", "b3", "y1");
Trained tree:
[f2]
/ | \
b1 b2 b3
/ | \
y1 y2 [f1]
/ \
a2 a3
/ \
y3 y1
The instance ("a1", "b3") cannot be classified with the given tree.
Several questions came up to me:
Does this situation have a name? tree incompleteness or something like that?
Is there a way to know if a decision tree will cover all combinations of unknown instances (all features values combinations)?
Does the reason of this "incompleteness" lie on the topology of the data set or on the algorithm used to train the decision tree (ID3 in this case) (or other)?
Is there a method to classify these unclassifiable instances with the given decision tree? or one must use another tool (random forest, neural networks...)?
This situation cannot occur with the ID3 decision-tree learner---regardless of whether it uses information gain or some other heuristic for split selection. (See, for example, ID3 algorithm on Wikipedia.)
The "trained tree" in your example above could not have been returned by the ID3 decision-tree learning algorithm.
This is because when the algorithm selects a d-valued attribute (i.e. an attribute with d possible values) on which to split the given leaf, it will create d new children (one per attribute value). In particular, in your example above, the node [f1] would have three children, corresponding to attribute values a1,a2, and a3.
It follows from the previous paragraph (and, in general, from the way the ID3 algorithm works) that any well-formed vector---of the form (v1, v2, ..., vn, y), where vi is a value of i-th attribute and y is the class value---should be classifiable by the decision tree that the algorithm learns on a given train set.
Would you mind providing a link to the software you used to learn the "incomplete" trees?
To answer your questions:
Not that I know of. It doesn't make sense to learn such "incomplete trees." If we knew that some attribute values will never occur then we would not include them in the specification (the file where you list attributes and their values) in the first place.
With the ID3 algorithm, you can prove---as I sketched in the answer---that every tree returned by the algorithm will cover all possible combinations.
You're using the wrong algorithm. Data has nothing to do with it.
There is no such thing as an unclassifiable instance in decision-tree learning. One usually defines a decision-tree learning problem as follows. Given a train set S of examples x1,x2,...,xn of the form xi=(v1i,v2i,...,vni,yi) where vji is the value of the j-th attribute and yi is the class value in example xi, learn a function (represented by a decision tree) f: X -> Y, where X is the space of all possible well-formed vectors (i.e. all possible combinations of attribute values) and Y is the space of all possible class values, which minimizes an error function (e.g. the number of misclassified examples). From this definition, you can see that one requires that the function f is able to map any combination to a class value; thus, by definition, each possible instance is classifiable.

Predicting probabilities

I have time series data consisting of a vector
v=(x_1,…, x_n)
of binary categorical variables and the probabilities for four outcomes
p_1, p_2, p_3, p_4.
Given a new vector of categorical variables I want to predict the probabilities
p_1,…,p_4
The probabilities are very unbalanced with
p_1>.99 and p_2, p_3, p_4 < .01.
For example
v_1= (1,0,0,0,1,0,0,0) , p_1=.99, p_2=.005, p_3=.0035, p_4= .0015
v_2=(0,0,1,0,0,0,0,1), p_1=.99, p_2=.006, p_3=.0035, p_4= .0005
v_3=(0,1,0,0,1,1,1,0), p_1=.99, p_2=.005, p_3=.003, p_4= .002
v_4=(0,0,1,0,1,0,0,1), p_1=.99, p_2=.0075, p_3=.002, p_4= .0005
Given a new vector
v_5= (0,0,1,0,1,1,0,0)
I want to predict
p_1, p_2, p_3, p_4.
I should also note that the new vector could be identical to one of the input vectors, i.e.,
v_5=(0,0,1,0,1,0,0,1)= v_4.
My initial approach is to turn this into 4 regression problems.
The first would predict p_1, the second would predict p_2, the third would predict p_3, and the fourth would predict p_4. The problem with this is that I need
p_1+p_2+p_3+p_4=1
I’m not classifying, but should I also be worried about the unbalanced probabilities. Any ideas would be welcome.
Your suggestion of considering this as a multiple problem + final normalization, has some sense, but it's known to be problematic in many cases (see, e.g., the problem of masking).
What you're describing here is multiclass (soft) classification, and there are many many known techniques for doing so. You didn't specify which language/tool/library you're using, or if you're planning on rolling your own (which only makes sense for didactic purposes). I'd suggest starting with Linear Discriminant Analysis which is very simple to understand and implement, and - despite its strong assumptions - is known to often work well in practice (see the classical book by Hastie & Tibshirani).
Irrespective of the underlying algorithm you use for soft binary classification (e.g., LDA or not), It is not very difficult to transform aggregate input into labeled input.
Consider for example the instance
v_1= (1,0,0,0,1,0,0,0) , p_1=.99, p_2=.005, p_3=.0035, p_4= .0015
If your classifier supports instance weights, feed it 4 instances, labeled 1, 2, ..., with weights given by p_1, p_2, ..., respectively.
If it does not support instance weights, simply simulate what the law of large numbers says would happen: generate some large n instance from this input; for each such new input, choose a label randomly proportionally to its probability.

Machine Learning Model for Multi-Label Classification where we know relationship between the labels

I am having a problem at hand where,
I need to classify the input data to one or more of the labels S1, S2, S3, S4
There is a relationship between the labels S1, S2, S3 and S4 which is,
If input is labelled Sn it must be labelled S1..Sn.
S1, S2, S3 and S4 are like different stages for an entity X to pass through. Based on input data X might get through one or many of the stages, X must pass through S1 to go to S2, S2 to go to S3 and so on
We want to ensure that only those X are allowed to pass which reach S3, so based on input data we decide whether to allow X to go through S1 or not
What machine learning models can we choose to predict if X reaches S3 if we have information like, input data and what stages X has passed for that input data
I am thinking in direction of a multi label classification There might be some relationship between input data stage S1 and S2
Update: I have to train with examples like
1. Input data is s1
2. Input data is s2
3. ..
4 ..
Some doubts
Your question is far from being clear, for example:
We want to optimize that most X reaches S3, so based on input data we decide whether to allow X to go through S1 or not
Actually suggest, that the best model would be "always answer yes" ,as it maximized number of objects reaching S3 (as it simply lets any object reach this point)
General ideas
I assume two possible interpretations:
You have a labels "pipeline", which simply means, that object cannot be labelled S_n if it has not been already labelled with all S_i for i < n
This does not seem to be the problem for one single model, you can pipeline models in a natural way, ie. train a model 1 which regognizes, if object x should have label S_1. Next, you train a model 2 on all data that has label S_1 in the training set and predict label S_2, and so on. During execution you simply ask each model i if it accepts (labels) the incoming object x, and stop when the first one says "no"
You have some more complex constraints on the labels, which may be strict or not.For such cases, you should try one of many methods of multi label classification with constraints, in particular there is a tech report regarding this aspect of ML.
Solution 1 - approximating test functions
If your problem can be described as:
You have data points X, such that for each of them you know the maximum number of some pipelineable tests T_i which x passes
You want to train a classifier able to predict, what is the maximum number of consequtive tests that your point x passes
You do not have access to actual tests T_i or they are very inefficient
Then the simplest way would be to apply the following training procedure instead of one classifier:
Take all your data points, label those with y=0 as 0 and those with y>=1 as 1 and train some binary classifier (for example SVM). So you simply temporarly relabel your data so it shows points that pass the first test and those who don't. Lets call this classifier cl_1
Now take your data points, label those with y=1 as 0 and those with y>=2 as 1 and again train binary classifier, and call it cl_2
Repest until all tests have their classifier, in general in we call the classifier cl_i when it can distinguish between points labeled with y=i-1 and those with y>=i.
Now, to classify your new point, you simply check iteratively all your cl_i for i=1,..,tests and answer with the largest such i that cl_i(x)=1. So you "simulate" your tests with classifiers, and simply say how many this tests' approximations it passed.
To sum up: each test can be approximated with one binary classifier, and then the question of "What is the biggest consequtive test number that our point passes" is approximated with "what is the biggest consequtive classifier number that out point is classified as true".
Solution 2 - simple regression
You can also simply apply regression from your input space into the number of tests it reaches. Regression actually has an imprinted assumption, that the output values are correlated. So if you train your data with pairs (x,y) where y is the number of last test passed by x, then you are actually using the fact, that the output y=3 is highly related to first getting y=2 in the computations. Such regression (non-linear!) could be simply done using neural networks (possibly regularized)

Resources