How do I get my custom header template rule to pass it's output downstream cc_binary/cc_library dependency? - bazel

I'm trying to build a rule for bazel which emulates the CMake *.in template system.
This has two challenges, the first is generate the template output. The second is make the output available to both genrules, filegroups and cc_* rules. The third is to get that dependency to transitively be passed to further downstream rules.
I have it generating the output file version.hpp in genfiles (or bazel-bin), and I can get the initial library rule to include it, but I can't seem to figure out how to make my cc_binary rule, which depends on the cc_library and transitively the header_template rule to find the header file.
I have the following .bzl rule:
def _header_template_impl(ctx):
# this generates the output from the template
ctx.actions.expand_template(
template = ctx.file.template,
output = ctx.outputs.out,
substitutions = ctx.attr.vars,
)
return [
# create a provider which says that this
# out file should be made available as a header
CcInfo(compilation_context=cc_common.create_compilation_context(
headers=depset([ctx.outputs.out])
)),
# Also create a provider referencing this header ???
DefaultInfo(files=depset(
[ctx.outputs.out]
))
]
header_template = rule(
implementation = _header_template_impl,
attrs = {
"vars": attr.string_dict(
mandatory = True
),
"extension": attr.string(default=".hpp"),
"template": attr.label(
mandatory = True,
allow_single_file = True,
),
},
outputs = {
"out": "%{name}%{extension}",
},
output_to_genfiles = True,
)
elsewhere I have a cc_library rule:
load("//:tools/header_template.bzl", "header_template")
# version control
BONSAI_MAJOR_VERSION = '2'
BONSAI_MINOR_VERSION = '0'
BONSAI_PATCH_VERSION = '9'
BONSAI_VERSION = \
BONSAI_MAJOR_VERSION + '.' + \
BONSAI_MINOR_VERSION + '.' + \
BONSAI_PATCH_VERSION
header_template(
name = "bonsai_version",
extension = ".hpp",
template = "version.hpp.in",
vars = {
"#BONSAI_MAJOR_VERSION#": BONSAI_MAJOR_VERSION,
"#BONSAI_MINOR_VERSION#": BONSAI_MINOR_VERSION,
"#BONSAI_PATCH_VERSION#": BONSAI_PATCH_VERSION,
"#BONSAI_VERSION#": BONSAI_VERSION,
},
)
# ...
private = glob([
"src/**/*.hpp",
"src/**/*.cpp",
"proto/**/*.hpp",
])
public = glob([
"include/*.hpp",
":bonsai_version",
])
cc_library(
# target name matches directory name so you can call:
# bazel build .
name = "bonsai",
srcs = private,
hdrs = public,
# public headers
includes = [
"include",
],
# ...
deps = [
":bonsai_version",
# ...
],
# ...
)
When I build, my source files need to be able to:
#include "bonsai_version.hpp"
I think the answer involves CcInfo but I'm grasping in the dark as to how it should be constructed.
I've already tried add "-I$(GENDIR)/" + package_name() to the copts, to no avail. The generated header still isn't available.
My expectation is that I should be able to return some kind of Info object that would allow me to add the dependency in srcs. Maybe it should be a DefaultInfo.
I've dug through the bazel rules examples and the source, but I'm missing something fundamental, and I can't find documentation that discuss this particular.
I'd like to be able to do the following:
header_template(
name = "some_header",
extension = ".hpp",
template = "some_header.hpp.in",
vars = {
"#SOMEVAR#": "value",
"{ANOTHERVAR}": "another_value",
},
)
cc_library(
name = "foo",
srcs = ["foo.src", ":some_header"],
...
)
cc_binary(
name = "bar",
srcs = ["bar.cpp"],
deps = [":foo"],
)
and include the generated header like so:
#include "some_header.hpp"
void bar(){
}

The answer looks like it is:
def _header_template_impl(ctx):
# this generates the output from the template
ctx.actions.expand_template(
template = ctx.file.template,
output = ctx.outputs.out,
substitutions = ctx.attr.vars,
)
return [
# create a provider which says that this
# out file should be made available as a header
CcInfo(compilation_context=cc_common.create_compilation_context(
# pass out the include path for finding this header
includes=depset([ctx.outputs.out.dirname]),
# and the actual header here.
headers=depset([ctx.outputs.out])
))
]
elsewhere:
header_template(
name = "some_header",
extension = ".hpp",
template = "some_header.hpp.in",
vars = {
"#SOMEVAR#": "value",
"{ANOTHERVAR}": "another_value",
},
)
cc_library(
name = "foo",
srcs = ["foo.cpp"],
deps = [":some_header"],
...
)
cc_binary(
name = "bar",
srcs = ["bar.cpp"],
deps = [":foo"],
)

If your header has a generic name (eg config.h) and you want it to be private (ie srcs instead of hdrs), you might need a different approach. I've seen this problem for gflags, which "leaked" config.h and affected libraries that depended on it (issue).
Of course, in both cases, the easiest solution is to generate and commit header files for the platforms you target.
Alternatively, you can set copts for the cc_library rule that uses the generated private header:
cc_library(
name = "foo",
srcs = ["foo.cpp", "some_header.hpp"],
copts = ["-I$(GENDIR)/my/package/name"],
...
)
If you want this to work when your repository is included as an external repository, you have a bit more work cut out for you due to bazel issue #4463.
PS. You might want to see if cc_fix_config from https://github.com/antonovvk/bazel_rules works for you. It's just a wrapper around perl but I found it useful.

Related

What Bazel incantation do I need to include gRPC reflection header file?

When I try to compile a bazel project that uses gRPC reflection, I get the following error.
fatal error: external/com_github_grpc_grpc/src/proto/grpc/reflection/v1alpha/reflection.grpc.pb.h: No such file or directory
In my WORKSPACE, I have the following bindings:
def _com_github_grpc_grpc():
external_http_archive("com_github_grpc_grpc")
external_http_archive("build_bazel_rules_apple")
# Rebind some stuff to match what the gRPC Bazel is expecting.
native.bind(
name = "protobuf_headers",
actual = "#com_google_protobuf//:protobuf_headers",
)
native.bind(
name = "libssl",
actual = "//external:ssl",
)
native.bind(
name = "cares",
actual = "//external:ares",
)
native.bind(
name = "grpc",
actual = "#com_github_grpc_grpc//:grpc++",
)
In my BUILD file, I have the following deps:
deps = [
"//external:protobuf_headers",
"//external:grpc",
],
What additional incantations do I need for the include at the top of the question?
After a spelunking through issues, I figured out that I need the following WORKSPACE
workspace(name = "xxx")
load("#bazel_tools//tools/build_defs/repo:http.bzl", "http_archive")
http_archive(
name = "com_github_grpc_grpc",
strip_prefix = "grpc-master",
urls = ["https://github.com/grpc/grpc/archive/master.tar.gz"],
)
load("#com_github_grpc_grpc//bazel:grpc_deps.bzl", "grpc_deps")
grpc_deps()
load("#com_github_grpc_grpc//bazel:grpc_extra_deps.bzl", "grpc_extra_deps")
grpc_extra_deps()
and the following BUILD:
cc_binary(
name = "ReflectionPlay",
copts = ["-std=c++17"],
srcs = ["reflection_play.cc"],
deps = [
"#com_github_grpc_grpc//:grpc++",
"#com_github_grpc_grpc//:grpc++_reflection",
"#com_github_grpc_grpc//:grpcpp_admin",
],
)

How to limit rule to a subset of cpp toolchains?

I have a rule like this
do_action = rule (
implementation = _impl,
attrs = {
...
"_cc_toolchain": attr.label(default = Label("#bazel_tools//tools/cpp:current_cc_toolchain")),
},
fragments = ["cpp"],
toolchains = [
"#bazel_tools//tools/cpp:toolchain_type",
],
)
I define custom cc_toolchain for a custom cpu:
toolchain(
name = "cc-toolchain-%{toolchain_name}",
toolchain = ":cc-compiler-%{toolchain_name}",
# can be run on this platform
target_compatible_with = [
"#platforms//os:windows",
"#platforms//cpu:x86_64",
],
toolchain_type = "#bazel_tools//tools/cpp:toolchain_type",
)
cc_toolchain_suite(
name = "toolchain",
toolchains = {
"%{cpu}": ":cc-compiler-%{toolchain_name}",
},
)
I use --crostool_top to select this toolchain when needed.
I want to allow my custom rule to be invoked only if --crostool_top matches one of my custom toolchains. How to do this?
Add a new constraint_setting with a constraint_value which only your toolchains are target_compatible_with, and then make all targets which use your rules target_compatible_with it.
Something like this in a BUILD file:
constraint_setting(name = "is_my_toolchain")
constraint_value(
name = "yes_my_toolchain",
constraint_setting = ":is_my_toolchain",
)
And then add yes_my_toolchain to target_compatible_with on all your toolchains.
Easiest way to force using it with every usage of your rule is with a macro. Rename the actual rule to _do_action (so it's private and can't be loaded directly from any BUILD file) and add:
def do_action(target_compatible_with = [], **kwargs):
_do_action(
target_compatible_with = target_compatible_with + [
"//your_package:yes_my_toolchain",
],
**kwargs
)

How to alter classpath for Java executable in ctx.actions.run?

In my Java-based Bazel project I use a code generator written in Java. The generator is part of the root project, and used in sub-projects as well.
What I want to achieve is to include the output of the root project (a .jar file) as a dependency for the code generation in sub-projects to grant the code generator access to all compiled files of the root project (through the classpath). Is that possible in Bazel?
What I see is that the classpath for key generation in the child project only includes the dependencies of the code generator binary (//parent:SettingsGenerator in the script below).
In my custom rule I invoke the code generator basically like this:
def _generate_settings(ctx):
...
ctx.actions.run(
inputs = [ctx.file._src] + [ctx.files.deps],
outputs = [keys, settings, loader],
mnemonic = "GenKeysAndSettings",
arguments = [args],
executable = ctx.executable._tool,
)
return [DefaultInfo(
files=depset([keys, settings, loader]),
runfiles=ctx.runfiles(files=ctx.files.deps)
)]
gen_settings = rule(
implementation = _generate_settings,
attrs = {
"lang": attr.string(),
"deps": attr.label_list(
allow_files = True
),
"_tool": attr.label(
cfg = "host",
executable = True,
default = Label("//parent:SettingsGenerator"),
),
"_src": attr.label(
single_file = True,
default = Label("//parent:Name")
),
}
)
The parent project BUILD:
load("//parent:settings.bzl", "gen_settings")
gen_settings(
name = "GenerateSettings",
lang = ""
)
java_library(
name = "parent",
srcs = glob(["src/main/java/**/*.java"]) + [
":GenerateSettings",
],
...
)
java_binary(
name = "SettingsGenerator",
srcs = glob(["src/main/java/**/SettingsGenerator.java"]),
main_class = "my.company.SettingsGenerator",
...
)
The child project BUILD:
gen_settings(
name = "GenerateSettings",
lang = "Java",
deps = ["//parent"]
)
...
My workaround is to include the .jar file as input and use a custom classloader in the generator. But it would be nice if I could control the classpath directly from Bazel.
Any help would be appreciated. Thank you.

Idiomatic retrieval of the Bazel execution path

I'm working on my first custom Bazel rules. The rules allow the running of bats command line tests.
I've included the rule definition below verbatim. I'm pretty happy with it so far but there's one part which feels really ugly and non-standard. If the rule user adds a binary dependency to the rule then I make sure that the binary appears on the PATH so that it can be tested. At the moment I do this by making a list of the binary paths and then appending them with $PWD which is expanded inside the script to the complete execution path. This feels hacky and error prone.
Is there a more idiomatic way to do this? I don't believe I can access the execution path in the rule due to it not being created until the execution phase.
Thanks for your help!
BATS_REPOSITORY_BUILD_FILE = """
package(default_visibility = [ "//visibility:public" ])
sh_binary(
name = "bats",
srcs = ["libexec/bats"],
data = [
"libexec/bats-exec-suite",
"libexec/bats-exec-test",
"libexec/bats-format-tap-stream",
"libexec/bats-preprocess",
],
)
"""
def bats_repositories(version="v0.4.0"):
native.new_git_repository(
name = "bats",
remote = "https://github.com/sstephenson/bats",
tag = version,
build_file_content = BATS_REPOSITORY_BUILD_FILE
)
BASH_TEMPLATE = """
#!/usr/bin/env bash
set -e
export TMPDIR="$TEST_TMPDIR"
export PATH="{bats_bins_path}":$PATH
"{bats}" "{test_paths}"
"""
def _dirname(path):
prefix, _, _ = path.rpartition("/")
return prefix.rstrip("/")
def _bats_test_impl(ctx):
runfiles = ctx.runfiles(
files = ctx.files.srcs,
collect_data = True,
)
tests = [f.short_path for f in ctx.files.srcs]
path = ["$PWD/" + _dirname(b.short_path) for b in ctx.files.deps]
sep = ctx.configuration.host_path_separator
ctx.file_action(
output = ctx.outputs.executable,
executable = True,
content = BASH_TEMPLATE.format(
bats = ctx.executable._bats.short_path,
test_paths = " ".join(tests),
bats_bins_path = sep.join(path),
),
)
runfiles = runfiles.merge(ctx.attr._bats.default_runfiles)
return DefaultInfo(
runfiles = runfiles,
)
bats_test = rule(
attrs = {
"srcs": attr.label_list(
allow_files = True,
),
"deps": attr.label_list(),
"_bats": attr.label(
default = Label("#bats//:bats"),
executable = True,
cfg = "host",
),
},
test = True,
implementation = _bats_test_impl,
)
This should be easy to support from Bazel 0.8.0 which will be released in ~2 weeks.
In your skylark implementation you should do ctx.expand_location(binary) where binary should be something like $(execpath :some-label) so you might want to just format the label you got from the user with the $(execpath) and bazel will make sure to give you the execution location of that label.
Some relevant resources:
$location expansion in Bazel
https://github.com/bazelbuild/bazel/issues/2475
https://github.com/bazelbuild/bazel/commit/cff0dc94f6a8e16492adf54c88d0b26abe903d4c

Dispatching C++ generated files into srcs and hdrs

In the Bazel official documentation there is an example explaining how to create a Java library built from regular java files and files generated by a :gen_java_srcs rule. I rewrite this code here for ease of reading:
java_library(
name = "mylib",
srcs = glob(["*.java"]) + [":gen_java_srcs"],
deps = "...",
)
genrule(
name = "gen_java_srcs",
outs = [
"Foo.java",
"Bar.java",
],
...
)
Now in a C++ perspective, I am in a scenario where the genrule generates two kind of files: .hpp and .cpp:
genrule(
name = "gen_cpp_srcs",
outs = [
"myFile_1.hpp","myFile_2.hpp",...,"myFile_N.hpp",
"myFile.cpp","myFile_2.cpp",...,"myFile_N.cpp",
],
...
)
where N is some tens.
My problem/question is: how to write the cc_library rule, with an automatic dispatching of the hpp and cpp files into hdrs and srcs field?
I want something like:
cc_library(
name = "mylib",
srcs = glob(["*.cpp"]) + (howto: .cpp files of [":gen_cpp_srcs"]),
hdrs = glob(["*.hpp"]) + (howto: .hpp files of [":gen_cpp_srcs"]),
...
)
Some magic like:
output_filter(":gen_cpp_srcs","*.cpp")
would be perfect, but I do not know enough of Bazel to make it real.
Globs only get expanded when they're passed into rules, so you'll need to write a simple rule. I would package it like this (in a file named filter.bzl):
# The actual rule which does the filtering.
def _do_filter_impl(ctx):
return struct(
files = set([f for f in ctx.files.srcs if f.path.endswith(ctx.attr.suffix)]),
)
_do_filter = rule(
implementation = _do_filter_impl,
attrs = {
"srcs": attr.label_list(
mandatory = True,
allow_files = True,
),
"suffix": attr.string(
mandatory = True,
),
},
)
# A convenient macro to wrap the custom rule and cc_library.
def filtered_cc_library(name, srcs, hdrs, **kwargs):
_do_filter(
name = "%s_hdrs" % name,
visibility = ["//visibility:private"],
srcs = hdrs,
suffix = ".hpp",
)
_do_filter(
name = "%s_srcs" % name,
visibility = ["//visibility:private"],
srcs = srcs,
suffix = ".cpp",
)
native.cc_library(
name = name,
srcs = [ ":%s_srcs" % name ],
hdrs = [ ":%s_hdrs" % name ],
**kwargs
)
This is what my demo BUILD file looks like (I changed the globs so they both include *.cpp and *.hpp files; using the label of a genrule will work the same way):
load("//:filter.bzl", "filtered_cc_library")
filtered_cc_library(
name = "mylib",
srcs = glob(["*.*pp"]),
hdrs = glob(["*.*pp"]),
)
This is easy to extend to more sophisticated filtering by changing _do_filter_impl. In particular, changing suffix to an attr.string_list so you can accept multiple C/C++ source/header extensions seems like a good idea.
Depending on the genrule by name (:gen_cpp_srcs) will give you all of the outputs of the genrule, as you have noted. Instead, you can depend on the individual outputs of the genrule (e.g. hdrs = [:myFile.hpp] and srcs = [:myFile.cpp]).
See also the answer to Bazel & automatically generated cpp / hpp files.
Looks like you know the total number of files that should be generated. Can you put those in their own variables and then reuse them in both targets. Something like this in your BUILD file:
output_cpp_files = [
"myFile_1.cpp",
"myFile_2.cpp",
"myFile_3.cpp"
]
output_hpp_files = [
"myFile_1.hpp",
"myFile_2.hpp",
"myFile_3.hpp"
]
genrule(
name = "gen_cpp_srcs",
outs = output_cpp_files + output_hpp_files,
cmd = """
touch $(OUTS)
"""
)
cc_library(
name = "mylib",
srcs = output_cpp_files,
hdrs = output_hpp_files
)

Resources