How to calculate training loss on selected subsample predictions - machine-learning

I am training a deep learning multi-target tracking model on video sequence.
The video frames are extracted and annotated at 1fps.
To utilize smoother temporal coherence, I have extracted the intermediate 24 frames between every 2 annotated frames. Now, I have all the frames extracted at 25fps but the ground truth labels are available only at the interval of 25 frames initially annotated.
I want to train a deep learning model by providing all the smooth 25fps frames during forward pass, but during backprops, I want to calculate and optimize the loss only for the annotated 1fps frames.
Any hint on how I should go about this? Especially when my mini-batch size is less than 25.

One useful thing I am doing so far, is to have -1 label for the un-annotated frames and skip them when computing loss. This may be sub-optimal but works, anyone with a better idea?

Related

Should batch size matter at inference

I am training a model
5-layer very narrow CNN,
followed by a 5-layer highway,
then fully connected and
softmax over 7 classes.
As there are 7 equally distributed classes, the random bet lassification accuracy would be 14 % (1/7th is roughly 14 %).
Actual accuracy is 40 %. So the net somewhat learns..
Now the weird thing is it learns only with a batch size of 2. Batch sizes of 16, 32 or 64 don't learn at all.
Now the even weirder thing: If I take the checkpoint of the trained net (accuracy 40 %, trained at batch size 2) and start it with a batch size of 32 I should keep on getting my 40 % at least for the first couple of steps, right? I do when I restart at barch size 2. But with the bs 32 initial accuracy is, guess what, 14 %.
Any idea why the batch size would ruin inference? I fear I might be having a shape error somewhere but I cannot find anything.
Thx for your thoughts
There are two possible modes of work for a batch normalization layer at inference time:
Compute the activation mean and variance over a given inference batch
Use average mean and variance from the training batches
In Pytorch, for example, the track_running_stats parameter of the BatchNorm2D layer is set to True, or in other words, Option 2 is the default:
If you choose Option 1, then of course, the size of the inference batch and the characteristics of each sample in it will affect the outputs of the other samples.
So γ and β are learned in the training and used in inference as is, and if you do not change the default behavior, the "same" is true for E[x] and Var[x]. In purpose I wrote "same" within quotes, as these are just batch statistics from the training.
If we're already talking about batch size, I'd mention that it may sound tempting to use very large batch sizes in training, to have more accurate statistics and to have a better approximation of the loss function for an SGD step. Yet, approximating the loss function too well has drawbacks, such as overfitting.
You should look at the accuracy when your model converges, not when it is still training. It's hard to compare effects of different batch size during training steps because they can get "lucky" and follow a good gradient path. In general smaller batch size tends to be more noisy and could give you good peaks and bad drops in accuracy.
It's hard to tell without looking at the code, but I think that large batch sizes cause the gradient to be too large and the training cannot converge. One way to fight this effect would be to increase the batch size but decrease the learning rate. You can also try to clip gradient magnitude.

How to fit a classifier with high accuracy on the training set with low features?

I have input (r,c) in range (0, 1] as the coordinate of a pixel of an image and its color 1 or 2 only.
I have about 6,400 pixels.
My attempt of fitting X=(r,c) and y=color was a failure the accuracy won't go higher than 70%.
Here's the image:
The first is the actual image, the 2nd is the image I use to train on, it has only 2 colors. The last is the image that the neural network generated with about 500 weights training with 50 iterations. Input Layer is 2, one hidden layer of size 100, and the output layer is 2. (for binary classification like this, I may need only one output layer but I am just preparing for multi-class classification)
The classifier failed to fit the training set, why is that? I tried generating high polynomial terms of those 2 features but it doesn't help. I tried using Gaussian kernel and random 20-100 landmarks on the picture to add more features, also got similar output. I tried using logistic regressions, doesn't help.
Please help me increase the accuracy.
Here's the input:input.txt (you can load it into Octave the variable is coordinate (r,c features) and idx (color)
You can try plotting it first to make sure that you understand the input then try training on it and tell me if you get better result.
Your problem is hard to model. You are trying to fit function from R^2 to R, which has lots of complexity - lots of "spikes", lots of discontinuous regions (pixels that are completely separated from the rest). This is not an easy problem, and not usefull one.. In order to overfit your network to such setting you will need plenty of hidden units. Thus, what are the options to do so?
General things that are missing in the question, and are important
Your output variable should be {0, 1} if you are fitting your network through cross entropy cost (log likelihood), which you should use for classification.
50 iteraions (if you are talking about some mini-batch iteraions) is orders of magnitude to small, unless you mean 50 epochs (iterations over whole training set).
Actual things, that will probably need to be done (at least one of the below):
I assume that you are using ReLU activations (or Tanh, hard to say looking at the output) - you can instead use RBF activations, and increase number of hidden neurons to ~5000,
If you do not want to go with RBFs, then you will need 1-2 additional hidden layers to fit function of this complexity. Try architecture of type 100-100-100 instaed.
If the above fails - increase number of hidden units, that's all you need - enough capacity.
In general: neural networks are not designed for working with low dimensional datasets. This is nice example from the web, that you can learn pix-pos to color mapping, but it is completely artificial and seems to actually harm people intuitions.

Will larger batch size make computation time less in machine learning?

I am trying to tune the hyper parameter i.e batch size in CNN.I have a computer of corei7,RAM 12GB and i am training a CNN network with CIFAR-10 dataset which can be found in this blog.Now At first what i have read and learnt about batch size in machine learning:
let's first suppose that we're doing online learning, i.e. that we're
using a mini­batch size of 1. The obvious worry about online learning
is that using mini­batches which contain just a single training
example will cause significant errors in our estimate of the gradient.
In fact, though, the errors turn out to not be such a problem. The
reason is that the individual gradient estimates don't need to be
super­accurate. All we need is an estimate accurate enough that our
cost function tends to keep decreasing. It's as though you are trying
to get to the North Magnetic Pole, but have a wonky compass that's
10­-20 degrees off each time you look at it. Provided you stop to
check the compass frequently, and the compass gets the direction right
on average, you'll end up at the North Magnetic Pole just
fine.
Based on this argument, it sounds as though we should use online
learning. In fact, the situation turns out to be more complicated than
that.As we know we can use matrix techniques to compute the gradient
update for all examples in a mini­batch simultaneously, rather than
looping over them. Depending on the details of our hardware and linear
algebra library this can make it quite a bit faster to compute the
gradient estimate for a mini­batch of (for example) size 100 , rather
than computing the mini­batch gradient estimate by looping over the
100 training examples separately. It might take (say) only 50 times as
long, rather than 100 times as long.Now, at first it seems as though
this doesn't help us that much.
With our mini­batch of size 100 the learning rule for the weights
looks like:
where the sum is over training examples in the mini­batch. This is
versus for online learning.
Even if it only takes 50 times as long to do the mini­batch update, it
still seems likely to be better to do online learning, because we'd be
updating so much more frequently. Suppose, however, that in the
mini­batch case we increase the learning rate by a factor 100, so the
update rule becomes
That's a lot like doing separate instances of online learning with a
learning rate of η. But it only takes 50 times as long as doing a
single instance of online learning. Still, it seems distinctly
possible that using the larger mini­batch would speed things up.
Now i tried with MNIST digit dataset and ran a sample program and set the batch size 1 at first.I noted down the training time needed for the full dataset.Then i increased the batch size and i noticed that it became faster.
But in case of training with this code and github link changing the batch size doesn't decrease the training time.It remained same if i use 30 or 128 or 64.They are saying that they got 92% accuracy.After two or three epoch they have got above 40% accuracy.But when i ran the code in my computer without changing anything other than the batch size i got worse result after 10 epoch like only 28% and test accuracy stuck there in the next epochs.Then i thought since they have used batch size of 128 i need to use that.Then i used the same but it became more worse only give 11% after 10 epoch and stuck in there.Why is that??
Neural networks learn by gradient descent an error function in the weight space which is parametrized by the training examples. This means the variables are the weights of the neural network. The function is "generic" and becomes specific when you use training examples. The "correct" way would be to use all training examples to make the specific function. This is called "batch gradient descent" and is usually not done for two reasons:
It might not fit in your RAM (usually GPU, as for neural networks you get a huge boost when you use the GPU).
It is actually not necessary to use all examples.
In machine learning problems, you usually have several thousands of training examples. But the error surface might look similar when you only look at a few (e.g. 64, 128 or 256) examples.
Think of it as a photo: To get an idea of what the photo is about, you usually don't need a 2500x1800px resolution. A 256x256px image will give you a good idea what the photo is about. However, you miss details.
So imagine gradient descent to be a walk on the error surface: You start on one point and you want to find the lowest point. To do so, you walk down. Then you check your height again, check in which direction it goes down and make a "step" (of which the size is determined by the learning rate and a couple of other factors) in that direction. When you have mini-batch training instead of batch-training, you walk down on a different error surface. In the low-resolution error surface. It might actually go up in the "real" error surface. But overall, you will go in the right direction. And you can make single steps much faster!
Now, what happens when you make the resolution lower (the batch size smaller)?
Right, your image of what the error surface looks like gets less accurate. How much this affects you depends on factors like:
Your hardware/implementation
Dataset: How complex is the error surface and how good it is approximated by only a small portion?
Learning: How exactly are you learning (momentum? newbob? rprop?)
I'd like to add to what's been already said here that larger batch size is not always good for generalization. I've seen these cases myself, when an increase in batch size hurt validation accuracy, particularly for CNN working with CIFAR-10 dataset.
From "On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima":
The stochastic gradient descent (SGD) method and its variants are
algorithms of choice for many Deep Learning tasks. These methods
operate in a small-batch regime wherein a fraction of the training
data, say 32–512 data points, is sampled to compute an approximation
to the gradient. It has been observed in practice that when using a
larger batch there is a degradation in the quality of the model, as
measured by its ability to generalize. We investigate the cause for
this generalization drop in the large-batch regime and present
numerical evidence that supports the view that large-batch methods
tend to converge to sharp minimizers of the training and testing
functions—and as is well known, sharp minima lead to poorer
generalization. In contrast, small-batch methods consistently converge
to flat minimizers, and our experiments support a commonly held view
that this is due to the inherent noise in the gradient estimation. We
discuss several strategies to attempt to help large-batch methods
eliminate this generalization gap.
Bottom-line: you should tune the batch size, just like any other hyperparameter, to find an optimal value.
The 2018 opinion retweeted by Yann LeCun is the paper Revisiting Small Batch Training For Deep Neural Networks, Dominic Masters and Carlo Luschi suggesting a good generic maximum batch size is:
32
With some interplay with choice of learning rate.
The earlier 2016 paper On Large-batch Training For Deep Learning: Generalization Gap And Sharp Minima gives some reason for not using big batches, which I paraphrase badly, as big batches are likely to get stuck in local (“sharp”) minima, small batches not.

Neural network and batch learning

I am new to neural networks and would like to find out when am I supposed to reduce the learning rate as opposed to the batch size.
I would understand that if the learning diverges, the learning rate would have to be reduced.
However, when do I reduce or increase the batch size? My guess is that if the loss fluctuates too much, it would be ideal to reduce the batch size?
If you increase the batch size, the gradient is more likely to point towards the right direction so that the (overall) error decreases. Especially compared to updating the weights after considering only a single example which results in a very random and noisy gradient.
Therefore, if the loss function fluctuates, you can do both: increase the batch size and decrease the learning rate. The drawback of a larger batch size is the higher computational cost per update. So if the training takes too long, see if it still converges with a smaller batch size.
You can read more here or here. (Btw, https://stats.stackexchange.com/ is more suitable for theoretical questions which do not contain specific code implementations)
The "correct" way to learn is to use all of your training data for every single step in your gradient descent. However, this takes bit of time to compute it as this is a really heavy function which is - most of the time - parameterized by the thousands of training examples.
The idea is that the error function / weight update looks similar enough when you leave a couple of your training examples out. This speeds the calculateion of the error function up. However, the drawback is that you might not go in the correct direction with some gradient descent steps. But it should be "almost" correct in most cases.
So the rationale is that even if you don't go completely in the correct direction, you can do a lot more steps in the same time so that it doesn't matter.
A very common choice for the mini-batch size is 128 or 256. The most extreme choice is usually called "stochastic gradient descent" and uses only 1 training example.
As so often in ML, it is a good idea to just try different values.

Multilayer perceptron for ocr works with only some data sets

NEW DEVELOPMENT
I recently used OpenCV's MLP implementation to test whether it could solve the same tasks. OpenCV was able to classify the same data sets that my implementation was able to, but unable to solve the one's that mine could not. Maybe this is due to termination parameters (determining when to end training). I stopped before 100,000 iterations, and the MLP did not generalize. This time the network architecture was 400 input neurons, 10 hidden neurons, and 2 output neurons.
I have implemented the multilayer perceptron algorithm, and verified that it works with the XOR logic gate. For OCR I taught the network to correctly classify letters of "A"s and "B"s that have been drawn with a thick drawing untensil (a marker). However when I try to teach the network to classify a thin drawing untensil (a pencil) the network seems to become stuck in a valley and unable to classify the letters in a reasonable amount of time. The same goes for letters I drew with GIMP.
I know people say we have to use momentum to get out of the valley, but the sources I read were vague. I tried increasing a momentum value when the change in error was insignificant and decreasing when above, but it did not seem to help.
My network architecture is 400 input neurons (one for each pixel), 2 hidden layers with 25 neurons each, and 2 neurons in the output layer. The images are gray scale images and the inputs are -0.5 for a black pixel and 0.5 for a white pixel.
EDIT:
Currently the network is trainning until the calculated error for each trainning example falls below an accepted error constant. I have also tried stopping trainning at 10,000 epochs, but this yields bad predictions. The activation function used is the sigmoid logistic function. The error function I am using is the sum of the squared error.
I suppose I may have reached a local minimum rather than a valley, but this should not happen repeatedly.
Momentum is not always good, it can help the model to jump out of the a bad valley but may also make the model to jump out of a good valley. Especially when the previous weights update directions is not good.
There are several reasons that make your model not work well.
The parameter are not well set, it is always a non-trivial task to set the parameters of the MLP.
An easy way is to first set the learning rate, momentum weight and regularization weight to a big number, but to set the iteration (or epoch) to a very large weight. Once the model diverge, half the learning rate, momentum weight and regularization weight.
This approach can make the model to slowly converge to a local optimal, and also give the chance for it to jump out a bad valley.
Moreover, in my opinion, one output neuron is enough for two class problem. There is no need to increase the complexity of the model if it is not necessary. Similarly, if possible, use a three-layer MLP instead of a four-layer MLP.

Resources