How to add a custom ModelMetadataDetailsProvider that has a dependency that needs to be resolved by Autofac? - asp.net-mvc

I'm trying to add a custom ModelMetadataDetailsProvider, but the provider implementation has dependencies that need to be resolved by the Service Provider (Autofac). If I Add the ModelMetadataDetailsProvider in ConfigureServices, I have to instantiate and manually provide all of the dependencies, some of which are singleton and are AutoActivated, so that won't work... Is it possible to add a ModelMetadataDetailsProvider outside of ConfigureServices?
It doesn't appear that this can be configured using DI, so the only thing I can think of is to use the Service Locator Anti Pattern to provide the dependencies when they are needed instead of in the constructor. Is there a more acceptable way to accomplish this?
public IServiceProvider ConfigureServices(IServiceCollection services)
{
services.AddMvc()
.AddMvcOptions(options => {
options.ModelMetadataDetailsProviders.Add(new MyProvider(???))
})
.SetCompatibilityVersion(CompatibilityVersion.Version_2_2)
.AddControllersAsServices();
services.AddAutofac();
ApplicationContainer = BuildContainer(services);
return new AutofacServiceProvider(ApplicationContainer);
}
public IContainer BuildContainer(IServiceCollection services)
{
var builder = new ContainerBuilder();
builder.Populate(services);
builder.RegisterType<HttpContextAccessor>()
.As<IHttpContextAccessor>()
.SingleInstance();
builder.RegisterType<DataAccess>()
.As<IDataAccess>()
.WithParameter("connectionString", Configuration.GetConnectionString("DatabaseContext"))
.InstancePerLifetimeScope();
....
builder.RegisterType<D1>()
.As<ID1>();
builder.RegisterType<D2>()
.As<ID2>();
builder.RegisterType<D3>()
.As<ID3>();
builder.RegisterType<MyProvider>()
.As<IMyProvider>();
}
public interface IMyProvider : IDisplayMetadataProvider
{
...
}
public class MyProvider : IMyProvider
{
public MyProvider (ID1 d1, ID2 d2, ID3 d3)
{
...
}
public void CreateDisplayMetadata(DisplayMetadataProviderContext context)
{
...
}
}

You can achieve this by creating a class that implements the IConfigureOptions<MvcOptions> interface:
public class AddCustomModelMetadataDetailsProvider : IConfigureOptions<MvcOptions>
{
private readonly MyCustomModelMetadataDetailsProvider _provider;
public AddCustomModelMetadataDetailsProvider(MyCustomModelMetadataDetailsProvider provider)
{
_provider = provider;
}
public void Configure(MvcOptions options)
{
options.ModelMetadataDetailsProviders.Add(_provider);
}
}
and register it as such in the Configure method:
services.AddTransient<IConfigureOptions<MvcOptions>, AddCustomModelMetadataDetailsProvider>();
The benefit of this approach, as you can see, is that you can use regular constructor injection in the AddCustomModelMetadataDetailsProvider class to get the instance of the service you're interested in.
ASP.NET automatically calls the Configure methods of all the IConfigureOptions<MvcOptions> services registered in the container.
Because creating these classes can be time-consuming, ASP.NET Core 2.2 introduced new overloads which allow you to do the following:
services
.AddOptions<MvcOptions>()
.Configure<MyCustomModelMetadataDetailsProvider>((options, customMetadataDetailsProvider) =>
{
options.ModelMetadataDetailsProviders.Add(customMetadataDetailsProvider);
});
In that case, customMetadataDetailsProvider would be resolved from the container.
You can include up to 5 services to configure your options. See this official documentation page.

Related

Connect to 2 different MartenDB datastores with ASP.Net Core

When setting up a MartenDB datastore in ASP.Net Core, you normally put code like this in your Startup.cs:
services.AddMarten(o =>
{
o.Connection(configuration.GetConnectionString("MyDatabase"));
o.AutoCreateSchemaObjects = AutoCreate.All;
o.Serializer(new JsonNetSerializer { EnumStorage = EnumStorage.AsString });
});
This allows you to then inject IDocumentSession and IDocumentStore into your various classes for working with that database.
Now what do you do if you have to connect to a second database? I looked at the ISessionFactory but it is not apparent that you can change the connection string from here. Do you need to manually create and register a new DocumentStore?
To answer my own question, I wound up creating a custom DocumentStore and ISessionFactory for each database I wanted to connect to, and then injecting the custom SessionFactory.
Here's the code (only showing one instance of each class for the sake of brevity. Just replace Db1 with Db2 for the second version of each class):
The custom DocumentStore:
public class Db1Store : DocumentStore
{
public Db1Store(StoreOptions options) : base(options)
{
}
}
The custom SessionFactory:
public class Db1SessionFactory : ISessionFactory
{
private readonly Db1Store store;
public Db1SessionFactory(Db1Store store)
{
this.store = store;
}
public IQuerySession QuerySession()
{
return store.QuerySession();
}
public IDocumentSession OpenSession()
{
return store.OpenSession();
}
}
The service registration (this replaces the services.AddMarten call):
services.AddSingleton(p =>
{
var options = new StoreOptions();
options.Connection(configuration.GetConnectionString("DB1"));
options.AutoCreateSchemaObjects = AutoCreate.All;
options.Serializer(new JsonNetSerializer { EnumStorage = EnumStorage.AsString });
return new Db1Store(options);
});
services.AddSingleton<Db1SessionFactory>();
Then you inject the Db1SessionFactory instance into your class, and run a query like this:
var result = await db1SessionFactory.QuerySession().Query<MyAwesomeTable>().ToListAsync();
Downsides:
I would prefer to inject the QuerySession or DocumentSession, but I can't see a way to do that without moving to Autofac or a similar DI Container that supports named instances.
I am not sure what downsides there will be creating these QuerySession/DocumentSessions in this manner. It may be a bad tradeoff.

Net Core: access to appsettings.json values from Autofac Module

AspNet core app
1) Autofac module like that
public class AutofacModule : Module
{
protected override void Load(ContainerBuilder builder)
{
//Register my components. Need to access to appsettings.json values from here
}
}
2) Module from step№1 registered into Startup.cs
public void ConfigureContainer(ContainerBuilder builder)
{
builder.RegisterModule(new AutofacModule());
}
How to access to appsettings.json values from AutofacModule? I need that for create my objects inside AutofacModule and using it for DI.
Need to change step №2
public void ConfigureContainer(ContainerBuilder builder)
{
//get settigns as object from config
var someSettings= Configuration.GetSection(typeof(SomeSettings).Name).Get<SomeSettings>();
//put settings into module constructor
builder.RegisterModule(new AutofacModule(someSettings));
}
I don't know is "best practise" way or not, but it works.
So currently trying this as well.
First thing is to get the necessary nuget packages, and add them as using statements at the top of your class.
using Microsoft.Extensions.Configuration.Json;
using Autofac;
using Autofac.Configuration;
using Autofac.Extensions.DependencyInjection;
In your Program.cs Main or Startup.cs...
public static IContainer Container { get; set; }
Main() or Startup()
{
// Add the configuration to the ConfigurationBuilder.
var config = new ConfigurationBuilder();
config.AddJsonFile("appsettings.json");
var containerBuilder = new ContainerBuilder();
// Register the ConfigurationModule with Autofac.
var configurationModule = new ConfigurationModule(config.Build());
containerBuilder.RegisterModule(configurationModule);
//register anything else you need to...
Container = containerBuilder.Build();
}
This will register the configuration module into your autoFac container, after which you can then use constructor injection to pass this round...
public class YourController
{
private readonly IContainer _config;
public YourController(IContainer configuration)
{
// Use IContainer instance
_config = configuration;
}
Hope that helps somewhat, if you get any further a different way then please share.

AddTransient service using info from request

I've got an app in asp.net core using the built-in DI framework. I'd like to add a per-request (i.e. transient) service to the provider, but I'd like to actually make use of the request in its construction.
services.AddTransient<IMyService>(provider => { ... });
That's the closest overload I can find, but the provider object doesn't have anything about the current request. Is there a way to achieve what I'm trying to do, without upgrading to a more robust DI framework?
As posted in the comments, you can inject the IHttpContextAccessor into your services and access it, if the HttpContext is the only thing you need.
public class MyService : IMyService
{
private readonly HttpContext context;
public MyService(IHttpContextAccessor httpContextAccessor)
{
if(IHttpContextAccessor==null)
throw new ArgumentNullException(nameof(httpContextAccessor));
context = httpContextAccessor.HttpContext;
}
}
However, if you need something that's only available in the controller or outside of HttpContext, you can create a factory and pass the parameters to the factory
public class MyServiceFactory : IMyServiceFactory
{
// injecting the HttpContext for request wide service resolution
public MyServiceFactory(IHttpContextAccessor httpContextAccessor) { ... }
public IMyService Create(IDependency1 dep1, IDependency2 dep 2, string someRuntimeConfig)
{
IServiceProvider provider = this.context.RequestServices;
var myService = new MyService(provider.GetService<ISomeRepository>(), dep1, dep2, someRuntimeConfig);
return myService;
}
}
and then inject the IMyServiceFactory to your classes where you'd need IMyService.

How can I get started with ASP.NET (5) Core and Castle Windsor for Dependency Injection?

Background:
I've used Castle Windsor with Installers and Facilities according to the Castle Windsor tutorial with earlier versions of MVC (pre-6) and WebAPI.
ASP.NET (5) Core has included some Dependency Injection support but I still haven't figured out exactly how to wire it up, and the few samples I have found look a lot different than how I've used it before (with the installers/facilities). Most examples predate ASP.NET (5) cores recent release and some seem to have outdated information.
It seems to have changed quite radically from the previous versions composition root setup, and not even Microsoft.Framework.DependencyInjection.ServiceProvider can resolve all of the dependencies when I set it as the Castle Windsor DI fallback. I'm still digging into the details but there isn't much up to date information.
My attempt to use Castle Windsor for DI
I've found an adapter like this: Github Castle.Windsor DI container.
Startup.cs
private static IWindsorContainer container;
public void Configure(IApplicationBuilder app, IHostingEnvironment env, ILoggerFactory loggerfactory)
{
container = new WindsorContainer();
app.UseServices(services =>
{
// ADDED app.ApplicationServices FOR FALLBACK DI
container.Populate(services, app.ApplicationServices);
container.BeginScope();
return container.Resolve<IServiceProvider>();
});
// ... default stuff
WindsorRegistration.cs
I added a few lines to add a Castle Windsor ILazyComponentLoader fallback.
using Castle.MicroKernel.Lifestyle;
using Castle.MicroKernel.Registration;
using Castle.MicroKernel.Resolvers.SpecializedResolvers;
using Castle.Windsor;
using Microsoft.Framework.DependencyInjection;
using System;
using System.Collections.Generic;
using System.Reflection;
namespace Notes.Infrastructure
{
/// <summary>
/// An adapted current autofac code to work with Castle.Windsor container.
/// https://github.com/aspnet/Home/issues/263
/// </summary>
public static class WindsorRegistration
{
public static void Populate(
this IWindsorContainer container,
IEnumerable<IServiceDescriptor> descriptors,
IServiceProvider fallbackProvider // ADDED FOR FALLBACK DI
)
{
// ADDED FOR FALLBACK DI
// http://davidzych.com/2014/08/27/building-the-castle-windsor-dependency-injection-populator-for-asp-net-vnext/
// Trying to add a fallback if Castle Windsor doesn't find the .NET stuff
var fallbackComponentLoader = new FallbackLazyComponentLoader(fallbackProvider);
container.Register(Component.For<ILazyComponentLoader>().Instance(fallbackComponentLoader));
// Rest as usual from the Github link
container.Register(Component.For<IWindsorContainer>().Instance(container));
container.Register(Component.For<IServiceProvider>().ImplementedBy<WindsorServiceProvider>());
container.Register(Component.For<IServiceScopeFactory>().ImplementedBy<WindsorServiceScopeFactory>());
container.Kernel.Resolver.AddSubResolver(new CollectionResolver(container.Kernel));
Register(container, descriptors);
}
private static void Register(
IWindsorContainer container,
IEnumerable<IServiceDescriptor> descriptors)
{
foreach (var descriptor in descriptors)
{
if (descriptor.ImplementationType != null)
{
// Test if the an open generic type is being registered
var serviceTypeInfo = descriptor.ServiceType.GetTypeInfo();
if (serviceTypeInfo.IsGenericTypeDefinition)
{
container.Register(Component.For(descriptor.ServiceType)
.ImplementedBy(descriptor.ImplementationType)
.ConfigureLifecycle(descriptor.Lifecycle)
.OnlyNewServices());
}
else
{
container.Register(Component.For(descriptor.ServiceType)
.ImplementedBy(descriptor.ImplementationType)
.ConfigureLifecycle(descriptor.Lifecycle)
.OnlyNewServices());
}
}
else if (descriptor.ImplementationFactory != null)
{
var service1 = descriptor;
container.Register(Component.For(descriptor.ServiceType)
.UsingFactoryMethod<object>(c =>
{
var builderProvider = container.Resolve<IServiceProvider>();
return
service1.ImplementationFactory(builderProvider);
})
.ConfigureLifecycle(descriptor.Lifecycle)
.OnlyNewServices());
}
else
{
container.Register(Component.For(descriptor.ServiceType)
.Instance(descriptor.ImplementationInstance)
.ConfigureLifecycle(descriptor.Lifecycle)
.OnlyNewServices());
}
}
}
private static ComponentRegistration<object> ConfigureLifecycle(
this ComponentRegistration<object> registrationBuilder,
LifecycleKind lifecycleKind)
{
switch (lifecycleKind)
{
case LifecycleKind.Singleton:
registrationBuilder.LifestyleSingleton();
break;
case LifecycleKind.Scoped:
registrationBuilder.LifestyleScoped();
break;
case LifecycleKind.Transient:
registrationBuilder.LifestyleTransient();
break;
}
return registrationBuilder;
}
private class WindsorServiceProvider : IServiceProvider
{
private readonly IWindsorContainer _container;
public WindsorServiceProvider(IWindsorContainer container)
{
_container = container;
}
public object GetService(Type serviceType)
{
return _container.Resolve(serviceType);
}
}
private class WindsorServiceScopeFactory : IServiceScopeFactory
{
private readonly IWindsorContainer _container;
public WindsorServiceScopeFactory(IWindsorContainer container)
{
_container = container;
}
public IServiceScope CreateScope()
{
return new WindsorServiceScope(_container);
}
}
private class WindsorServiceScope : IServiceScope
{
private readonly IServiceProvider _serviceProvider;
private readonly IDisposable _scope;
public WindsorServiceScope(IWindsorContainer container)
{
_scope = container.BeginScope();
_serviceProvider = container.Resolve<IServiceProvider>();
}
public IServiceProvider ServiceProvider
{
get { return _serviceProvider; }
}
public void Dispose()
{
_scope.Dispose();
}
}
}
}
First hiccup and resolution attempt
From that example I was getting:
An exception of type 'Castle.MicroKernel.ComponentNotFoundException' occurred in Castle.Windsor.dll but was not handled in user code
Additional information: No component for supporting the service Microsoft.Framework.Runtime.IAssemblyLoaderEngine was found
It wasn't available looking in the debugger at the Castle Fallback - Microsoft.Framework.DependencyInjection.ServiceProvider (table of services).
From http://davidzych.com/tag/castle-windsor/ I have tried to add a Fallback since Windsor couldn't resolve all of the ASP.NET dependencies.
FallbackLazyComponentLoader.cs
/// <summary>
/// https://github.com/davezych/DependencyInjection/blob/windsor/src/Microsoft.Framework.DependencyInjection.Windsor/FallbackLazyComponentLoader.cs
/// </summary>
public class FallbackLazyComponentLoader : ILazyComponentLoader
{
private IServiceProvider _fallbackProvider;
public FallbackLazyComponentLoader(IServiceProvider provider)
{
_fallbackProvider = provider;
}
public IRegistration Load(string name, Type service, IDictionary arguments)
{
var serviceFromFallback = _fallbackProvider.GetService(service);
if (serviceFromFallback != null)
{
return Component.For(service).Instance(serviceFromFallback);
}
return null;
}
}
It was seemingly necessary (to inject all the .NET dependencies)
I could comment out startup.cs app.UseBrowserLink(); to get rid of the IAssemblyLoaderEngine exception.
if (string.Equals(env.EnvironmentName, "Development", StringComparison.OrdinalIgnoreCase))
{
//app.UseBrowserLink(); //
Now I run into an exception:
An exception of type 'System.Reflection.TargetInvocationException' occurred in mscorlib.dll but was not handled in user code
Trying to get the service: {Name = "IUrlHelper" FullName = "Microsoft.AspNet.Mvc.IUrlHelper"}
public IRegistration Load(string name, Type service, IDictionary arguments)
{
var serviceFromFallback = _fallbackProvider.GetService(service);
How to move forward?
What is wrong with this attempt to wire up Castle Windsor DI into ASP.NET (5) Core?
For now I don't think you can use Castle Windsor Container as the DI container because Windsor doesn't support the new DNVM. But AutoFac does and they follow the same rule.
In the Startup.cs there is a ConfigureServices method whose return type is void. You can change the return type to ISerivceProvider and return a concrete IServiceProvider, the system will use the new IServiceProvider as the default DI container. Below is the AutoFac example.
public IServiceProvider ConfigureServices(IServiceCollection services)
{
services.Configure<AppSettings>(Configuration.GetSubKey("AppSettings"));
services.AddMvc();
var builder = new ContainerBuilder();
AutofacRegistration.Populate(builder, services);
var container = builder.Build();
return container.Resolve<IServiceProvider>();
}
The other DI adapters also implemented the similar interfaces. You can try yourself, but note AutoFac is in beta5 now so you need to make some adjustment to make your application run.
Hope this helps
There is a lot going on in your question, and to be honest I don't understand all of it.
However, there is a working Castle Windsor composition root in MvcSiteMapProvider that you are welcome reverse-engineer. Follow these steps to get a working composition root demo project for Windsor:
Create a new MVC 5 project.
Install MvcSiteMapProvider.MVC5.DI.Windsor.
Analyze the following files for the basic structure:
/App_Start/DIConfig.cs
/App_Start/CompositionRoot.cs
/DI/InjectableControllerFactory.cs
/DI/Windsor/WindsorDependencyInjectionContainer.cs
/DI/Windsor/Installers/MvcInstaller.cs
/DI/Windsor/Installers/MvcSiteMapProviderInstaller.cs
Once you have this working configuration, you can then refactor it and add to it to suit your application's needs.
As I recall, there weren't any changes required to make the MVC 4 DI configuration work with MVC 5. So, the problem you are running into is most likely one of the following:
You are using a 3rd party DI component that is not compatible with MVC 5.
You are using DependencyResolver, and your configuration doesn't include the necessary code to resolve the dependencies of MVC 5.
You are using advanced features of Castle Windsor that we are not using, and have them misconfigured in some way.
ControllerFactory vs DependencyResolver
Do note that according to Dependency Injection in .NET by Mark Seemann (which I highly recommend), it is ill-advised to use IDependencyResolver with Castle Windsor because it guarantees resource leaks. In fact, this is probably the most compelling argument that he makes for his reasoning for declaring service locator as anti-pattern.
The recommended approach is to use IControllerFactory as the integration point into MVC, which implements a ReleaseController method to solve this issue.
So looking at your code, literally all of it can be replaced by Castle.Windsor.MsDependencyInjection library.
Add Castle.Windsor.MsDependencyInjection to your project then use like so:
public IServiceProvider ConfigureServices(IServiceCollection services)
{
services.AddMvc();
// Normal component registration can go here...
return WindsorRegistrationHelper.CreateServiceProvider(yourWindsorContainer, services);
}

How to use RavenDB queries in Data Layer or Classes?

I have setup RavenDB embedded in my MVC application. I follower all the tutorials to make the RavenController and I can query the Session in the controller.
Now I would really like to break away from mixing data in the controller and create a Data layer so that I can do some Business logic which will help me create complex View Models.
How do I query the Session in a plain class file? I can't seem to find any info on how to do this.
Dependency Injection is great for this. You move aside the creation of the necessary services and let the container manage the lifecycle of the components, including scoping IDocumentSession to one instance per HTTP request.
As an example, using Autofac (you'd need both the Autofac and Autofac.Mvc5 packages) you could have a class in your App_Start folder like this, and then call AutofacConfig.Configure() from your Global.asax:
public static class AutofacConfig
{
public static IContainer Container { get; private set; }
public static void Configure()
{
var builder = new ContainerBuilder();
var thisAssembly = Assembly.GetExecutingAssembly();
// Register our controllers with the container
builder.RegisterControllers(thisAssembly).PropertiesAutowired(PropertyWiringOptions.PreserveSetValues);
// Provide injections of the HTTP abstractions (HttpContextBase, etc.)
builder.RegisterModule(new AutofacWebTypesModule());
// Create and register the Raven IDocumentStore
builder.Register(c =>
{
var store = new DocumentStore {ConnectionStringName = "RavenDB"};
store.Initialize();
Raven.Client.Indexes.IndexCreation.CreateIndexes(typeof (MvcApplication).Assembly, store);
return store;
})
.As<IDocumentStore>()
.SingleInstance();
// Provide injection of Raven IDocumentSession
builder.Register(c => c.Resolve<IDocumentStore>().OpenSession())
.InstancePerRequest();
Container = builder.Build();
DependencyResolver.SetResolver(new AutofacDependencyResolver(Container));
}
}
Then, when you need an IDocumentSession some place outside of a controller:
// Business logic, or other class that injection is not provided for.
var session = AutofacConfig.Container.Resolve<IDocumentSession>();
Also include autofac otherwise you will get an error saying "does not contain definition Resolve ..."
using Autofac;
You can do similar things with most other DI container libraries; the API is just slightly different.
HttpContext.Current.Session holds current session, but you should definitely not use it in business logic layer. Business logic layer should not be aware of HttpContext.
Basic solution to this problem would be to create interface:
public interface ISession
{
int SomeValue { get; set; }
}
and implementation
public class HttpContextBasedSession : ISession
{
public int SomeValue
{
get
{
return Convert.ToInt32(HttpContext.Current.Session["SomeValue"]);
}
set
{
HttpContext.Current.Session["SomeValue"] = value;
}
}
}
Bind it with dependency injection framework.

Resources