Out of memory in neo4j using periodic commits - neo4j

I'm trying to load a pretty large (~200 million rows) file in neo4j using LOAD CSV like this
USING PERIODIC COMMIT
LOAD CSV WITH HEADERS FROM
'file:///home/manu/citation.csv.gz' AS line
MATCH (origin:`publication` {`id`: line.`cite_from`})
MATCH (destination:`publication` {`id`: line.`cite_to`})
MERGE (origin )-[rel:CITES ]->(destination );
but I keep seeing memory errors such as
raise CypherError.hydrate(**metadata)
neo4j.exceptions.TransientError: There is not enough memory to perform
the current task. Please try increasing 'dbms.memory.heap.max_size' in
the neo4j configuration (normally in 'conf/neo4j.conf' or, if you you
are using Neo4j Desktop, found through the user interface) or if you
are running an embedded installation increase the heap by using '-Xmx'
command line flag, and then restart the database.
when running the code, and in the server
Exception: java.lang.OutOfMemoryError thrown from the UncaughtExceptionHandler in thread "neo4j.StorageMaintenance-14"
2018-12-05 15:44:32.967+0000 WARN Java heap space
java.lang.OutOfMemoryError: Java heap space
2018-12-05 15:44:32.968+0000 WARN Unexpected thread death: org.eclipse.jetty.util.thread.QueuedThreadPool$2#b6328a3 in QueuedThreadPool[qtp483052300]#1ccacb0c{STARTED,8<=8<=14,i=1,q=0}[ReservedThreadExecutor#f5cbd17{s=0/1,p=0}]
Exception in thread "neo4j.ServerTransactionTimeout-6" Exception in thread "neo4j.TransactionTimeoutMonitor-11" java.lang.OutOfMemoryError: Java heap space
java.lang.OutOfMemoryError: Java heap
Of course I tried setting this dbms.memory.heap.max_size thing (up to 24 GB...above that, my 32-GB machine will not even be able to start neo4j), but am still getting those. The thing I don't quite get is: what's the purpose of the USING PERIODIC COMMIT part if (it seems) neo4j tries to load everything at once? When looking at the manual or, e.g., this thread you would think USING PERIODIC COMMIT is a fix for exactly the problem I'm having.
Any clue? The only workaround that comes to mind is splitting the file in several pieces, but that doesn't look like an elegant solution (also, if that works...couldn't neo4j do that for me transparently?)
EDIT: the query plan using EXPLAIN
Cheers.

Probably more a workaround than a "solution" but putting a UNIQUE constraint on the property that is extensively checked for that cypher query did the trick for me:
CREATE CONSTRAINT ON (p:publication) ASSERT p.id IS UNIQUE

Related

Neo4j TransactionMemoryLimit

I am running Neo4j (v4.1.5) community edition on a server node with 64GB RAM.
I set the heap size configuration as follows:
dbms.memory.heap.initial_size=31G
dbms.memory.heap.max_size=31G
During the ingestion via bolt, I got the following error:
{code: Neo.TransientError.General.TransactionMemoryLimit} {message:
Can't allocate extra 512 bytes due to exceeding memory limit;
used=2147483648, max=2147483648}
What I don't understand is that the max in the error message shows 2GB, while I've set the initial and max heap size to 31GB. Can someone help me understand how memory setting works in Neo4j?
It turned out that the default transaction memory allocation for this version was OFF_HEAP. Meaning that all the transactions were executed off heap with 2GB max. Adding the following setting in Neo4j resolved the issue:
dbms.tx_state.memory_allocation=ON_HEAP
I'm not sure why OFF_HEAP is the default setting while Neo4j manual recommends ON_HEAP setting:
When executing a transaction, Neo4j holds not yet committed data, the result, and intermediate states of the queries in memory. The size needed for this is very dependent on the nature of the usage of Neo4j. For example, long-running queries, or very complicated queries, are likely to require more memory. Some parts of the transactions can optionally be placed off-heap, but for the best performance, it is recommended to keep the default with everything on-heap.

Talend- Memory issues. Working with big files

Before admins start to eating me alive, I would like to say to my defense that I cannot comment in the original publications, because I do not have the power, therefore, I have to ask about this again.
I have issues running a job in talend (Open Studio for BIG DATA!). I have an archive of 3 gb. I do not consider that this is too much since I have a computer that has 32 GB in RAM.
While trying to run my job, first I got an error related to heap memory issue, then it changed for a garbage collector error, and now It doesn't even give me an error. (just do nothing and then stops)
I found this SOLUTIONS and:
a) Talend performance
#Kailash commented that parallel is only on the condition that I have to be subscribed to one of the Talend Platform solutions. My comment/question: So there is no other similar option to parallelize a job with a 3Gb archive size?
b) Talend 10 GB input and lookup out of memory error
#54l3d mentioned that its an option to split the lookup file into manageable chunks (may be 500M), then perform the join in many stages for each chunk. My comment/cry for help/question: how can I do that, I do not know how to split the look up, can someone explain this to me a little bit more graphical
c) How to push a big file data in talend?
just to mention that I also went through the "c" but I don't have any comment about it.
The job I am performing (thanks to #iMezouar) looks like this:
1) I have an inputFile MySQLInput coming from a DB in MySQL (3GB)
2) I used the tFirstRows to make it easier for the process (not working)
3) I used the tSplitRow to transform the data form many simmilar columns to only one column.
4) MySQLOutput
enter image description here
Thanks again for reading me and double thanks for answering.
From what I understand, your query returns a lot of data (3GB), and that is causing an error in your job. I suggest the following :
1. Filter data on the database side : replace tSampleRow by a WHERE clause in your tMysqlInput component in order to retrieve fewer rows in Talend.
2. MySQL jdbc driver by default retrieves all data into memory, so you need to use the stream option in tMysqlInput's advanced settings in order to stream rows.

Garbage collection tuning/performance degradation for neo4j bulk .csv import

I am running a bulk import of data into a neo4j instance (I have run against 2.2.0 community and enterprise editions as well as 2.1.7 community) running in server mode. My application creates a bunch of nodes in memory, and will peridoically stop to write a series .csv files and send cypher to the neo4j instance to upload the files. (this was done due to performance issues with running the application using the plain old REST API).
Overall, I'm looking to upload something like 150-5000 million nodes, so this is, in principle, the type of thing that neo4j claims to be able to handle relatively well.
Well, anyway, what I'm noticing when I run this against production data is that the application runs in two states -- one where the csv upload processes between 2k-8k of nodes per second, and one where it processes between 80-200 nodes per second. The two states are interwoven when you look at the upload as a time series, and as time goes on, it spends increasingly long amounts of time in the slow state.
Nodes are created through a series of
MERGE (:{NODE_TYPE} {csvLine.key = n.primaryKey}) on create set [PROPERTY LIST];
statements, and I have indexes on everything that I'm doing merges against. This doesn't feel like a degradation in the insert statements, because the slowdown is not linear, but rather bimodal, this feels like there are garbage collection in the neo4j instance. What is the best way to tune the neo4j JVM garbage collector for frequent bulk inserts?
neo4j.properties:
neostore.nodestore.db.mapped_memory=50M
neostore.relationshipstore.db.mapped_memory=500M
#neostore.relationshipgroupstore.db.mapped_memory=10M
neostore.propertystore.db.mapped_memory=100M
#neostore.propertystore.db.strings.mapped_memory=130M
neostore.propertystore.db.arrays.mapped_memory=130M
neo4j-wrapper.conf:
wrapper.java.additional=-XX:+UseConcMarkSweepGC
wrapper.java.additional=-XX:+CMSClassUnloadingEnabled
wrapper.java.additional=-XX:-OmitStackTraceInFastThrow
wrapper.java.additional=-XX:hashCode=5
wrapper.java.initmemory=8194
wrapper.java.maxmemory=8194
This felt like the sweet spot for both the overall heap memory and the neostore stuff. Increasing the overall heap degraded performance. That said, the neo4j garbage collection logs frequently have that GC (Allocation Failure) message.
EDIT: in response to Michael Hunger:
the machine has 64 GB of RAM, and nothing seems to be maxed out. It also seems like only a small number of cores are being used at any time. Garbage collector profiling shows that the garbage collector seems to be running quite frequently.
The exact cypher statements are, for example:
USING PERIODIC COMMIT 110000 LOAD CSV WITH HEADERS FROM 'file:///home/jschirmer/Event_2015_4_773476.csv' AS csvLine MERGE (s:Event {primaryKey: csvLine.primaryKey}) ON CREATE SET s.checkSum= csvLine.checkSum,s.epochTime= toInt(csvLine.epochTime),s.epochTimeCreated= toInt(csvLine.epochTimeCreated),s.epochTimeUpdated= toInt(csvLine.epochTimeUpdated),s.eventDescription= csvLine.eventDescription,s.fileName= csvLine.fileName,s.ip= csvLine.ip,s.lineNumber= toInt(csvLine.lineNumber),s.port= csvLine.port,s.processPid= csvLine.processPid,s.rawEventLine= csvLine.rawEventLine,s.serverId= csvLine.serverId,s.status= toInt(csvLine.status);
USING PERIODIC COMMIT 110000 LOAD CSV WITH HEADERS FROM 'file:///home/jschirmer/Event__File_2015_4_773476.csv' AS csvLine MATCH (n:SC_CSR{primaryKey: csvLine.Event_id}), (s:File{fileName: csvLine.File_id}) MERGE n-[:DATA_SOURCE]->s;
Though there are serveral such statements being made
I have tried a single concurrent transaction as well as running several (~3) such statements in parallel (which gives a roughly 2x improvement). I've tried tuning the periodic commit frequency, and the size of the file. It seems that this maximizes performance when the csv file is roughly 100k lines, which means that really, the periodic commit can be off.
I have not run profile on the staments. I will do that, but I thought that the eager merget problem was avoided by using MERGE ... on create statements.
IN general your config looks ok, what RAM does your machine have?
For the things you merge against I'd recommend constraint instead of an index.
What's your tx size? And how many concurrent tx do you run?
Instead of your generic merge statement (which wouldn't compile) can you share the concrete statements?
Did you profile the statements? Perhaps you run into the eager pipe problem:
http://www.markhneedham.com/blog/2014/10/23/neo4j-cypher-avoiding-the-eager/
Do you use periodic commit?
How large are you CSV files?
See: http://neo4j.com/developer/guide-import-csv/

How to explain the performance of Cypher's LOAD CSV clause?

I'm using Cypher's LOAD CSV syntax in Neo4J 2.1.2. So far it's been a huge improvement over the more manual ETL process required in previous versions. But I'm running into some behavior in a single case that's not what I'd expect and I wonder if I'm missing something.
The cypher query being used is this:
USING PERIODIC COMMIT 500
LOAD CSV FROM 'file:///Users/James/Desktop/import/dependency_sets_short.csv' AS row
MATCH (s:Sense {uid: toInt(row[4])})
MERGE (ds:DependencySet {label: row[2]}) ON CREATE SET ds.optional=(row[3] = 't')
CREATE (s)-[:has]->(ds)
Here's a couple of lines of the CSV:
227303,1,TO-PURPOSE-NOMINAL,t,73830
334471,1,AT-LOCATION,t,92048
334470,1,AT-TIME,t,92048
334469,1,ON-LOCATION,t,92048
227302,1,TO-PURPOSE-INFINITIVE,t,73830
116008,1,TO-LOCATION,t,68204
116007,1,IN-LOCATION,t,68204
227301,1,TO-LOCATION,t,73830
334468,1,ON-DATE,t,92048
116006,1,AT-LOCATION,t,68204
334467,1,WITH-ASSOCIATE,t,92048
Basically, I'm matching a Sense node (previously imported) based on it's ID value which is the fifth column. Then I'm doing a merge to either get a DependencySet node if it exists, or create it. Finally, I'm creating a has edge between the Sense node and the DependencySet node. So far so good, this all works as expected. What's confusing is the performance as the size of the CSV grows.
CSV Lines Time (msec)
------------------------------
500 480
1000 717
2000 1110
5000 1521
10000 2111
50000 4794
100000 5907
200000 12302
300000 35494
400000 Java heap space error
My expectation is that growth would be more-or-less linear, particularly as I'm committing every 500 lines as recommended by the manual, but it's actually closer to polynomial:
What's worse is that somewhere between 300k and 400k rows, it runs into a Java heap space error. Based on the trend from previous imports, I'd expect the import of 400k to take a bit over a minute. Instead, it churns away for about 5-7 minutes before running into the heap space error. It seems like I could split this file into 300,000-line chunks, but isn't that what "USING PERIODIC COMMIT" is supposed to do, more or less? I suppose I could give Neo4J more memory too, but again, it's not clear why I should have to in this scenario.
Also, to be clear, the lookups on both Sense.uid and DependencySet.label are indexed, so the lookup penalty for these should be pretty small. Here's a snippet from the schema:
Indexes
ON :DependencySet(label) ONLINE (for uniqueness constraint)
ON :Sense(uid) ONLINE (for uniqueness constraint)
Any explanations or thoughts on an alternative approach would be appreciated.
EDIT: The problem definitely seems to be in the MATCH and/or CREATE part of the query. If I remove lines 3 and 5 from the Cypher query it performs fine.
I assume that you've already created all the Sense labeled nodes before running this LOAD CSV import. What I think is going on is that as you are matching nodes with the label Sense into memory and creating relationships from the DependencySet to the Sense node via CREATE (s)-[:HAS]->(ds) you are increasing utilization of the available heap.
Another possibility is that the size of your relationship store in your memory mapped settings needs to be increased. In your scenario it looks like the Sense nodes have a high degree of connectivity to other nodes in the graph. When this happens your relationship store for those nodes require more memory. Eventually when you hit 400k nodes the heap is maxed out. Up until that point it needs to do more garbage collection and reads from disk.
Michael Hunger put together an excellent blog post on memory mapped settings for fast LOAD CSV performance. See here: http://jexp.de/blog/2014/06/load-csv-into-neo4j-quickly-and-successfully/
That should resolve your problem. I don't see anything wrong with your query.
i believe the line
MATCH (s:Sense {uid: toInt(row[4])})
makes the time paradigm. somewhere around the 200 000 in the x line of your graph, you have no longer all the Sense nodes in the memory but some of them must be cached to disk. thus all the increase in time is simply re-loading data from cache to memory and vise-versa (otherwise it will be still linear if kept in memory).
maybe if you could post you server memory settings, we could dig deeper.
to the problem of java heap error refer to Kenny's answer

Neo4j In memory configurations, multithreading, and slow writes

How do I improve performance when writing to neo4j. I currently have neo4j set up on a server and I am currently running it in embedded more. I believe my configurations are storing all the content of my graph database in memory based upon configurations I've found online
neostore.nodestore.db.mapped_memory=0
neostore.relationship.db.mapped_memory=0
neostore.propertystore.db.mapped_memory=0
neostore.propertystore.db.strings.mapped_memory=0
neostore.propertystore.db.arrays.mapped_memory=0
neostore.propertystore.db.index.keys.mapped_memory=0
neostore.propertystore.db.index.mapped_memory=0
node_auto_indexing=true
node_keys_indexable=type,id
cache_type=strong
use_memory_mapped_buffers=false
node_cache_size=12G
relationship_cache_size=12G
node_cache_array_fraction=10
relationship_cache_array_fraction=10
Please let me know if this is incorrect. The problem that I am encountering is that when I try to persist information to the graph database. It appears that those times are not very quick in comparison to our MYSQL times of the samething(ex. to add 250 items would take about 3sec and in MYSQL it takes 1sec) . I read online that when you have multiple indexes that that can slow down performance on persisting data so I am working on that right now to see if that is my culprit. But, I just wanted to make sure that my configurations seem to be inline when it comes to running your graph database in memory.
Second question to this topic. Okay, if my configurations are good and my database is indeed in memory, then is there a way to optimize persisting data just in case this isn't the silver bullet. If we ran one thread against our test that executes this functionality, oppose to 10 threads, its seems like the times for execution bubbles up
ex.( thread 1 finishes 1s, thread 2 finishes 2s, thread 3 finishes 3s,etc). Is there some special multithreaded configuration that I am missing to improve the performance when mulitple threads are hitting it at one time.
Neo4J version
1.9.1-enterprise
My Jvm configs are
-Xms25G -Xmx25G -XX:+UseNUMA -XX:+UseSerialGC
My Machine Specs:
File system type ext3
You cache arguments are invalid.
node_cache_size=12G
relationship_cache_size=12G
node_cache_array_fraction=10
relationship_cache_array_fraction=10
These can only be used with the GCR cache. Setting the cache isn't going to put everything in memory for you at start up, you will have to write code to do this for you. Something like this:
GlobalGraphOperations ggo = GlobalGraphOperations.at(graphDatabaseFactory);
for (Node n : ggo.getAllNodes()) {
for (String propertyKey : n.getPropertyKeys()) {
n.getProperty(propertyKey);
}
for (Relationship relationship : n.getRelationships()) {
}
}
Beware with the strong cache, if you have a lot of nodes/relationships, eventually your cache will become large and performing GC against it will cause long pauses in your system.
My recommendation would be to use the memory mapped files, as this is an OS handled and will be outside of heap space. It doesn't provide near the speed of caching, but it will provide a speed up if you have to read from the neo store.

Resources