What does manipulating behaviour at runtime mean? - ios

I have learned that using objective C's message dispatch system you can manipulate behaviour at runtime, such as method swizzling or even create classes at runtime.But what does it mean actually to change behaviour at runtime?

Predominantly it means two things - the classes and their implementation are defined in the runtime.
Methods
Objective-C uses dynamic dispatching. When a method is invoked, the runtime actually sends a message (via family of objc_msgSend functions) and looks for corresponding method in a class methods table. Even if a method wasn't implemented for a class, dynamic nature of the Objective-C allows to handle or redirect the message by overriding resolveInstanceMethod:, forwardingTargetForSelector: or forwardInvocation: methods. You can even add a method in runtime using class_addMethod function or exchange existing implementation of two methods using method-swizzling approach (method_exchangeImplementations function).
Classes
Thanks to dynamic traits of Objective-C you can change not only methods but also add/set/remove properties and ivars of a class. You can change even a class of an instance in runtime using object_setClass function.
There are much more methods that reveal full dynamic power of the Objective-C. You can refer to Objective-C Runtime page for more details about what you can do with them.

Objective-C besides running you code as you expect gives you a lot of possibilities to manipulate it’s behaviour at runtime.
Basically you can create a class from scratch and add some methods/properties to it when your app is running, or change the implementation of an existing selectors — also known as method swizzling.
By the way, you can find more information here:
https://docs.swift.org/swift-book/LanguageGuide/AdvancedOperators.html

Related

how are protocol methods in iOS automatically invoked?

Im trying to understand the high level implementation of protocols without delegates in Apple frameworks. When a subClass conforms to and implements a protocol method, how is that method called? Lets consider the NSCoder protocol methods (encodeWithCoder: and initWithCoder:) for instance.
Without delegates, could you provide any uses cases for protocols (other than achieving polymorphism? I see that some methods could be abstracted away from base classes and grouped into an interfaces but without any implementation (as mixins for instance), what is the significant use?
First, protocol methods are not special in any way. They, like every other Objective-C method, gets called by a message sent to an object. There's nothing special about that part of things. Protocols are basically just a hint to the compiler, though you can query whether an object conforms to one at runtime and make decisions based on that.
You can verify this by implementing a protocol method (or the entire protocol) without declaring that fact in a classes' interface, and call the function on an instance of that object after casting it to be id<YourProtocol>, and it will work.
You can (and sometimes should) call NSCoding methods yourself -- you may decide that you want to persist objects to the disk, and that this is the best way to do it.
NSCoding is actually a great example of why protocols are still useful even though they do not provide any implementation -- the implementation of initWithCoder: and encodeWithCoder: will be different for every class that implements them -- there is no sense in providing an implementation.
Building on that, consider the datasource property of a UICollectionView; as there is no multiple inheritance in Objective-C, it would be undesirable for the datasource to be a class itself, as that would prevent you from using a UIViewController as the data source, and force you to make a whole new class for that express purpose.
Protocols can also be used to implement multiple inheritance in a type safe way without redeclaring the interface of the giver in the inheritor. If the entire interface of the class being inherited from is a protocol, then the inheritor can simply conform to that protocol as well.
Objective-C does provide mixins in the form of Categories, which can implement protocols on existing classes.
For a full throated defense of protocols (in Swift), see the Protocol-Oriented Programming WWWDC 2015 talk.
Taking the example of the NSCoding Protocol, the two required methods in the protocol, basically implement the steps an object should perform to encode itself to be archived. It also implements the initWithCoder to recreate the object from the archive.
Lets say you create a custom object, only your object knows which properties it needs to archive.
When you call a method to archive your custom object, the method call ultimately flow to your encodeWithCoder or initWithCoder to take action specific to your class.
***** Updated ****
Looking at this with an example :
Lets say our data structure looks like this
someArray = [String,CustomObject,aDictionary]
When we want to archive someArray, we call the archiveRootObject method on it. Now inorder for someArray to archive itself, it needs all its contained items to inturn archive themselves. The Array simply instructs the sub items to archiver themselves calling the encodeWithCoder method on them.
By adopting and conforming to the NSCoding protocol, you are just confirming to the root array that Yes, I know how to archive and unarchive myself.
Hope this helps.

Objective-C, Delegate as Adapter Pattern: who is the adaptee?

I've read more than once that the Delegate Pattern used in Cocoa is an implementation of the Adaptern Pattern (http://en.wikipedia.org/wiki/Adapter_pattern).
They share the same intent, which is: let two objects with incompatible interfaces to work with each other.
The delegate object is the Adapter, because it adopts a protocol required by a client, the class that requires the protocol and has a weak reference to a delegate is the Client (so, this would be a class of the Cocoa framework).
My question is: who is the Adaptee? The delegate pattern doesn't wrap itself around any object, from what I've seen, who is the object that needs to be adapted?
Delegates are not really an example of the Adapter pattern. Protocols would be closer, but the best way to implement the Adapter pattern in Objective C is to create a new object that contains the object you want to adapt and uses it to serve a client.
Categories are another way of implementing the Adapter pattern, but they have some limitations. You can't override the implementation of existing methods in a category, and you can't add additional instance variables to a class with a category. However you can implement properties using associated objects and you can also add new instance methods.
You can also use multiple inheritance to implement the Adapter pattern in languages like C++ that offer it, but Objective-C does not support multiple inheritance.
A simple example of an Adapter using a category that I use in my projects is as follows:
Interface Builder (IB) includes a feature called "User Defined Runtime Attributes" that lets you set properties on your custom interface objects using Key Value Coding (KVC). It lets you specify a limited number of data types (ints, floats, bools, points, rects, UIColors, and a few others.)
You can use User Defined Runtime Attributes to set the border width and corner radius on a view's layer, and you SHOULD be able to use it to change the layer's border color or background color. However, layer colors are specified as CGColors, and UIViews use UIColors. Since IB only accepts UIColors in a User Defined Runtime Attribute, it doesn't work.
To fix this, I created a category of CALayer called CALayer+setUIColor. It has 2 methods, setBorderUIColor and setBackgroundUIColor. Those methods are very simple. They take UIColors as input, and simply convert the UIColor to a CGColor and set the layer's border color or background color.
You can see an early version of this category in my github project KeyframeViewAnimations.
I'd say that is a completely wrong view of the Cocoa delegate pattern.
The object needing a delegate is intentionally left incomplete. But instead of having an abstract class and adding the required functionality through subclassing, we add the required functionality by providing another object, the delegate.
Nowadays people will more and more switch from using delegate objects to providing the required functionality by passing one or more blocks instead.
I've found a solution in the official documentation, as I suspected there is no adaptee:
https://developer.apple.com/legacy/library/documentation/Cocoa/Conceptual/CocoaFundamentals/CocoaDesignPatterns/CocoaDesignPatterns.html#//apple_ref/doc/uid/TP40002974-CH6-SW5
Delegation is not a strict implementation of the Decorator pattern.
The host (delegating) object does not wrap an instance of the class it
wants to extend; indeed, it’s the other way around, in that the
delegate is specializing the behavior of the delegating framework
class. There is no sharing of interface either, other than the
delegation methods declared by the framework class.
Delegation in Cocoa is also part of the Template Method pattern
(Template Method).
Source: https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/CocoaFundamentals/CocoaDesignPatterns/CocoaDesignPatterns.html#//apple_ref/doc/uid/TP40002974-CH6-SW19
The DELEGATE object is Adapter because:
It uses special protocol of special object and wrap it to itself special protocol.

I need to understand why delegation in Objective-C is so important, what makes it so special?

So I've read about delegate explanation and practices a lot, but I still seem to not get it, I have specific questions and I would love to have some insightful simple answers.
Why use delegate over instance method? In UIAlertView why not just make – alertView:clickedButtonAtIndex: an instance method that will be called on my UIAlertView instance?
What is the delegate property? why do I have to make delegate property and define it with that weird syntax #property (nonatomic, strong) id <ClassesDelegate> delegate
Is delegate and protocol are two faces for a coin?
When do I know I should implement delegate in my app instead of direct calling?
Is delegate used as much and as important in Swift?
What gets called first and why? The method in the class who made himself a delegate? or the delegate method itself in class where it is declared?
Thank you for taking the time to go through this, I am desperately looking for a clear and helpful answers to my questions, feel free to give example or cover some related topic!
The advantage of delegation is Dependency Inversion.
Usually code has a compile-time dependency in the same direction of the run-time calling dependency. If this was the case the UITableview class would have a compile-time dependence on our code since it calls our code. By using delegation this is inverted, our code has a compile-time dependency on the UITableview class but the UITableview class calls our code at run-time.
There is a cost involved: we need to set the delegate and UITableview has to check at run-time that the delegate method is implemented.
Note: When I say UITableview I am including UITableviewDelegate and UITableviewDatasource.
See: Dependency inversion principle and Clean Code, Episode 13.
Maybe a real life example can better describe what's different in the delegation design pattern.
Suppose you open a new business, and you have an accountant to take care of the bureaucratic stuffs.
Scenario #1
You go to his office, and give him the information he needs:
the company name
the company # number/id
the number of employees
the email address
the street address
etc.
Then the accountant will store the data somewhere, and will probably tell you "don't forget to call me if there's any change".
Tomorrow you hire a new employee, but forget to notify your accountant. He will still use the original outdated data you provided him.
Scenario #2
Using the delegation pattern, you go to your accountant, and you provide him your phone number (the delegate), and nothing else.
Later, he'll call you, asking: what's the business name?
Later, he'll call you, asking: how many employees do you have?
Later, he'll call you, asking: what's your company address?
The day after you hire a new employee.
2 days later, he'll call you asking: how many employee do you have?
In the delegation model (scenario #2), you see that your accountant will always have on demand up-to-date data, because he will call you every time he needs data. That's what "don't call me, I'll call you" means when talking of inversion of control (from the accountant perspective).
Transposing that in development, for example to populate a table you have 2 options:
instantiate a table control, pass all the data (list of items to display), then ask the table to render itself
instantiate a table control, give it a pointer to a delegate, and let it call the delegate when it needs to know:
the number of rows in the table
the data to display on row no. n
the height the row no. n should have
etc.
but also when:
the row no. n has been tapped
the header has been tapped
etc.
Firstly, don't feel bad that all if stuff isn't clear yet. This is a good example of something that seems tricky at first, but just takes time really click. That will happen before you know it :-). I'll try and answer each of your points above:
1) Think of it this way - the way UIAlertView works now, it allows Apple to “delegate” the implementation of the alertView:clickedButtonAtIndex: to you. If this was an instance method of UIAlertView, it would be the same implementation for everyone. To customize the implementation would then require subclassing - an often over relied upon design pattern. Apple tends to go with composition over inheritance in their frameworks and this is an example of that. You can read more on that concept here: http://en.wikipedia.org/wiki/Composition_over_inheritance
2) The delegate property is a reference to the object which implements the delegation methods and whichs should be used to “delegate” those tasks to. The weird syntax just means this - a property that holds a reference to an object that adheres to the protocol.
3) Not quite - delegation leverages protocols as a means for it’s implementation. In the example above, the is this the name of a protocol that an object which can be considered a delegate for that class must adhere to. It is inside that protocol that the methods for which a delegate of that class must implement are defined. You can also have optional protocol methods but that’s a different topic.
4) If I understand the question correctly, I think a good sign that you may want a delegate to be implemented instead of simply adding instance methods to your object is when you think that you may want the implementation of those methods to be easily swapped out or changed. When the implementation of those methods changes considerably based on where/how the functionality your building is being used
5) Absolutely! Objective-C and Swift are programming languages and the delegation pattern is an example of a design pattern. In general design patterns are hoziontal concepts that transcend across the verticals of programming languages.
6) I’m not sure I understand you exactly but I think there’s a bit of misunderstanding in the question - the method does not get called twice. The method declared in the delegate protocol is called once - typically from the class that contains the delegate property. The class calls the delegates implementation of that property via something like:
[self.delegate someMethodThatMyDelegateImplemented];
I hope some of this helped!
Sometimes you want your UIAlertView to work different in different contexts. If you set your custom UIAlertView to be delegate of itself it has to provide all those contexts (a lot of if/else statements). You can also set seperate delegate for each context.
This way you say to your compiler that every class (id) which implements protocol ClassesDelegate can be set to this property. As a side note it should usually be weak instead of strong to not introduce reference cycle (class A holds B, and B holds A)
Protocol (interface in other languages) is used to define set of methods which should be implemented by class. If class conforms to the protocol you can call this methods without knowledge of the specific class. Delegate is pattern in which class A delegates some work to class B (e.g. abstract printer delegates his work real printer)
When you need few different behaviours which depends on context (e.g. ContactsViewController needs to refresh his list when download is finished, but SingleContactViewController needs to reload image, labels etc.)
It is one of the most fundamental patterns in programming, so yes.
It's the same method
You can't just add a method to UIAlertView, because you don't have the source code. You'd have to subclass UIAlertView. But since you have more than one use of UIAlertView, You'd need several subclasses. That's very inconvenient.
Now let's say you use a library that subclasses UIAlertView, giving more functionality. That's trouble, because now you need to subclass this subclass instead of UIAlertView.
Now let's say that library uses different subclasses of UIAlertview, depending on whether you run on iOS 7 or 8, and UIAlertview unchanged on iOS 6. You're in trouble. Your subclassing pattern breaks down.
Instead, you create a delegate doing all the things specific to one UIAlertview. That delegate will work with the library just fine. Instead of subclassing a huge and complicated class, you write a very simple class. Most likely the code using the UIAlertview knows exactly what the delegate should be doing, so you can keep that code together.

Why do we needed category when we can use a subclass? and Why we needed blocks when we can use functions?

These two questions are quite common when we search it but yet I need to get a satisfying answer about both.When ever we search a difference between say subclass and a category we actually get definition of both not the difference.I went to an interview to a very good MNC working on iOS and I was encountered with these two questions and I gave almost all the answers I have read here but the interviewer was not satisfied.He stuck to his questions and was that-
Why do we needed category when we can use a subclass?
Why we needed blocks when we can use functions?
So please explain me what specific qualities blocks and category add in objective C that their counter part can't do.
First...
Just reading the documentation "Subclassing Notes" for NSString shows why creating categories is sometimes better than subclassing.
If you wanted to add a function -(void)reverseString (for instance) to NSString then subclassing it is going to be a massive pain in comparison to categories.
Second...
Blocks are useful for capturing scope and context. They can also be passed around. So you can pass a block into an asynchronous call which then may be passed elsewhere. TBH you don't care where the block is passed or where it is finally called from. The scope captured at the time of creating the block is captured too.
Yes, you can use methods too. But they both have different uses.
Your questions are a bit odd. It's like asking...
Why do hammers exist when we can just use wrenches?
You can't use subclassing when someone else is creating the objects. For instance, NSString is returned from hundreds of system APIs, and you can't change them to return MyImprovedString.
Functions split up the logic; blocks allow you to write it closer together. Like:
[thing doSomethingAndWhenFinishedDo: ^{ some_other_thing; }];
the same code written with functions would put the second part of the logic several lines away in the file. If you have a few nested scopes in your logic then blocks can really clean it up.
Why do we needed category when we can use a subclass?
Categories let you expand the API of existing classes without changing their type. Subclassing does the same thing but introduces a new type. Additionally subclassing lets you add state.
Why we needed blocks when we can use functions?
Block objects are a C-level syntactic and runtime feature. They are similar to standard C functions, but in addition to executable code they may also contain variable bindings to automatic (stack) or managed (heap) memory. A block can therefore maintain a set of state (data) that it can use to impact behavior when executed.
You can use blocks to compose function expressions that can be passed to API, optionally stored, and used by multiple threads. Blocks are particularly useful as a callback because the block carries both the code to be executed on callback and the data needed during that execution
Category : It is used if we want to add any method on a given class whose source is not known. This is basically used when we want to alter the behaviour of any Class.
For example : If we want to add a method on NSString to reverse a string we can go for categories.
Subclassing : If we want to modify state as well as behaviour of any class or override any methods to alter the behaviour of the parent class then we go for subclassing.
For example : We subclass UIView to alter its state and behaviour in our iOS code.
Reference :
When to use categories and when to use subclassing?
What is the difference between inheritance and Categories in Objective-C
We need new method but we don't need new class so we need category.
We need function but we don't need named function so we need block.

Why I should access the instance variable directly from within an initialization method?

The Apple Programming with Objective-C document states that:
You should always access the instance variables directly from within
an initialization method because at the time a property is set, the
rest of the object may not yet be completely initialized. Even if you
don’t provide custom accessor methods or know of any side effects from
within your own class, a future subclass may very well override the
behavior.
But I don't know what side effects will be in a setter method, please give me a example to explain why I have to access the instance variable directly from within an initialization method
The answer is simple - it is code smell. Dot notation like self.foobar = something in Objective-C is just a syntactic sugar for messaging.
Sending messages to self is normally fine. But there are two cases you need to avoid them:
1. When the object is being created, and
2. When the object is being destroyed.
At these two times, the object is in a strange in-between state. It lacks integrity. Calling methods during these times is a code smell because every method should maintain invariants as it operates on the object.
If a setter method is overridden by a subclass, you have no guarantee that your instance variable will contain the correct data. If you want to maintain data integrity within your objects during a crucial phase such as initialization, you should do as Apple recommends.
In addition to #JacobRelkin point, side effects can include Key-Value Observing. Other objects can observe changes even during -init* and -dealloc. I've had a KVO -dealloc bug in the past.
It truly is a best practice to setup and tear down the ivars directly.

Resources