How important it is to do camera calibration for ArUco? What if I dont calibrate the camera? What if I use calibration data from other camera? Do you need to recalibrate if camera focuses change? What is the practical way of doing calibration for consumer application?
Before answering your questions let me introduce some generic concepts related with camera calibration. A camera is a sensor that captures the 3D world and project it in a 2D image. This is a transformation from 3D to 2D performed by the camera. Following OpenCV doc is a good reference to understand how this process works and the camera parameters involved in the same. You can find detailed AruCo documentation in the following document.
In general, the camera model used by the main libraries is the pinhole model. In the simplified form of this model (without considering radial distortions) the camera transformation is represented using the following equation (from OpenCV docs):
The following image (from OpenCV doc) illustrates the whole projection process:
In summary:
P_im = K・R・T ・P_world
Where:
P_im: 2D points porojected in the image
P_world: 3D point from the world
K is the camera intrinsics matrix (this depends on the camera lenses parameters. Every time you change the camera focus for exapmle the focal distances fx and fy values whitin this matrix change)
R and T are the extrensics of the camera. They represent the rotation and translation matrices for the camera respecively. These are basically the matrices that represent the camera position/orientation in the 3D world.
Now, let's go through your questions one by one:
How important it is to do camera calibration for ArUco?
Camera calibration is important in ArUco (or any other AR library) because you need to know how the camera maps the 3D to 2D world so you can project your augmented objects on the physical world.
What if I dont calibrate the camera?
Camera calibration is the process of obtaining camera parameters: intrinsic and extrinsic parameters. First one are in general fixed and depend on the camera physical parameters unless you change some parameter as the focus for example. In such case you have to re-calculate them. Otherwise, if you are working with camera that has a fixed focal distance then you just have to calculate them once.
Second ones depend on the camera location/orientation in the world. Each time you move the camera the RT matrices change and you have to recalculate them. Here when libraries such as ArUco come handy because using markers you can obtain these values automatically.
In few words, If you don't calculate the camera you won't be able to project objects on the physical world on the exact location (which is essential for AR).
What if I use calibration data from other camera?
It won't work, this is similar as using an uncalibrated camera.
Do you need to recalibrate if camera focuses change?
Yes, you have to recalculate the intrinsic parameters because the focal distance changes in this case.
What is the practical way of doing calibration for consumer application?
It depends on your application, but in general you have to provide some method for manual re-calibration. There're also method for automatic calibration using some 3D pattern.
Related
I have a vehicle with two cameras, left and right. Is there a difference between me calibrating each camera separately vs me performing "stereo calibration" ? I am asking because I noticed in the OpenCV documentation that there is a stereoCalibrate function, and also a stereo calibration tool for MATLAB. If I do separate camera calibration on each and then perform a depth calculation using the undistorted images of each camera, will the results be the same ?
I am not sure what the difference is between the two methods. I performed normal camera calibration for each camera separately.
For intrinsics, it doesn't matter. The added information ("pair of cameras") might make the calibration a little better though.
Stereo calibration gives you the extrinsics, i.e. transformation matrices between cameras. That's for... stereo vision. If you don't perform stereo calibration, you would lack the extrinsics, and then you can't do any depth estimation at all, because that requires the extrinsics.
TL;DR
You need stereo calibration if you want 3D points.
Long answer
There is a huge difference between single and stereo camera calibration.
The output of single camera calibration are intrinsic parameters only (i.e. the 3x3 camera matrix and a number of distortion coefficients, depending on the model used). In OpenCV this is accomplished by cv2.calibrateCamera. You may check my custom library that helps reducing the boilerplate.
When you do stereo calibration, its output is given by the intrinsics of both cameras and the extrinsic parameters.
In OpenCV this is done with cv2.stereoCalibrate. OpenCV fixes the world origin in the first camera and then you get a rotation matrix R and translation vector t to go from the first camera (origin) to the second one.
So, why do we need extrinsics? If you are using a stereo system for 3D scanning then you need those (and the intrinsics) to do triangulation, so to obtain 3D points in the space: if you know the projection of a general point p in the space on both cameras, then you can calculate its position.
To add something to what #Christoph correctly answered before, the intrinsics should be almost the same, however, cv2.stereoCalibrate may improve the calculation of the intrinsics if the flag CALIB_FIX_INTRINSIC is not set. This happens because the system composed by two cameras and the calibration board is solved as a whole by numerical optimization.
There are a number of calibration tutorials to calibrate camera images of chessboards in EMGU (OpenCV). They all end up calibrating and then undistorting an image for display. That's cool and all but I need to do machine vision where I am taking an image, identifying the location of a corner or blob or feature in the image and then translating the location of that feature in pixels into real world X, Y coordinates.
Pixel -> mm.
Is this possible with EMGU? If so, how? I'd hate to spend a bunch of time learning EMGU and then not be able to do this crucial function.
Yes, it's certainly possible as the "bread and butter" of OpenCV.
The calibration you are describing, in terms of removing distortions, is a prerequisite to this process. After which, the following applies:
The Intrinsic calibration, or "camera matrix" is the first of two required matrices. The second is the Extrinsic calibration of the camera which is essentially the 6 DoF transform that describes the physical location of the sensor center relative to a coordinate reference frame.
All of the Distortion Coefficients, Intrinsic, and Extrinsic Calibrations are available from a single function in Emgu.CV: CvInvoke.CalibrateCamera This process is best explained, I'm sure, by one of the many tutorials available that you have described.
After that it's as simple as CvInvoke.ProjectPoints to apply the transforms above and produce 3D coordinates from 2D pixel locations.
The key to doing this successfully this providing comprehensive IInputArray objectPoints and IInputArray imagePoints to CvInvoke.CalibrateCamera. Be sure to cause "excitation" by using many images, from many different perspectives.
I am a beginner when it comes to computer vision so I apologize in advance. Basically, the idea I am trying to code is that given two cameras that can simulate a multiple baseline stereo system; I am trying to estimate the pose of one camera given the other.
Looking at the same scene, I would incorporate some noise in the pose of the second camera, and given the clean image from camera 1, and slightly distorted/skewed image from camera 2, I would like to estimate the pose of camera 2 from this data as well as the known baseline between the cameras. I have been reading up about homography matrices and related implementation in opencv, but I am just trying to get some suggestions about possible approaches. Most of the applications of the homography matrix that I have seen talk about stitching or overlaying images, but here I am looking for a six degrees of freedom attitude of the camera from that.
It'd be great if someone can shed some light on these questions too: Can an approach used for this be extended to more than two cameras? And is it also possible for both the cameras to have some 'noise' in their pose, and yet recover the 6dof attitude at every instant?
Let's clear up your question first. I guess You are looking for the pose of the camera relative to another camera location. This is described by Homography only for pure camera rotations. For General motion that includes translation this is described by rotation and translation matrices. If the fields of view of the cameras overlap the task can be solved with structure from motion which still estimates only 5 dof. This means that translation is estimated up to scale. If there is a chessboard with known dimensions in the cameras' field of view you can easily solve for 6dof by running a PnP algorithm. Of course, cameras should be calibrated first. Finally, in 2008 Marc Pollefeys came up with an idea how to estimate 6 dof from two moving cameras with non-overlapping fields of view without using any chess boards. To give you more detail please tell a bit for the intended appljcation you are looking for.
I have 2 images for the same object from different views. I want to form a camera calibration, but from what I read so far I need to have a 3D world points to get the camera matrix.
I am stuck at this step, who can explain it to me
Popular camera calibration methods use 2D-3D point correspondences to determine the projective properties (intrinsic parameters) and the pose of a camera (extrinsic parameters). The most simple approach is the Direct Linear Transformation (DLT).
You might have seen, that often planar chessboards are used for camera calibrations. The 3D coordinates of it's corners can be chosen by the user itself. Many people choose the chessboard being in x-y plane [x,y,0]'. However, the 3D coordinates need to be consistent.
Coming back to your object: Span your own 3D coordinate system over the object and find at least six spots, from which you can determine easy their 3D position. Once you have that, you have to find their corresponding 2D positions (pixel) in your two images.
There are complete examples in OpenCV. Maybe you get a better picture when reading the code.
I am using OpenCV, a newbie to the entire thing.
I have a scenario, I am projecting on a wall, I am building a kind of a robot which has a camera. I wanted to know how can I process the image so that I could get the real-world values of the co-ordinates of the blobs tracked by my camera?
First of all, you need to calibrate the intrinsic of the camera. Use checkerboard-patterns printed on cardboard to do this, OpenCV has methods for this although there are finished tools for this as well.
To get an idea, I have written some python code to calibrate from a live video stream, move the cardboard along the camera in some different angles and distances. Take a look here: http://svn.ioctl.eu/pub/opencv/py-camera_intrinsic/
Then you need to calibrate the extrinsic of the camera, that is the position of the camera wrt. your world coordinates. You can place some markers on the wall, define the 3D-position of those markers and let OpenCV calibrate the extrinsic for this (cvFindExtrinsicCameraParams2).
In my sample code, I calculate the extrinsic wrt. the checkerboard so I can render a Teapot in the correct perspective of the camera. You have to adjust this to your needs.
I assume you project only onto a flat surface. You have to know the geometry to get the 3D coordinates of your detected blob. You can then find the blobs in your camera image and knowing intrinsic, extrinsic and the geometry, you can cast rays for each blob from the camera according to your intrinsic/extrinsic and calculate the intersection of each such ray with your known geometry. The intersection then is your 3D point in world space where the blob is projected to.