Detect Docker runtime on host using environment variables - docker

I would like to run tests verifying the correct execution of Flyway migrations using TestContainers.
Using JUnit5, I would like to enable these tests only on a host that have a Docker daemon running (#EnabledIfSystemProperty(named = "docker...", matches = "")) https://junit.org/junit5/docs/current/user-guide/#writing-tests-conditional-execution-system-properties.
My question is: how can I check that a Docker daemon is available on host using environment variables?
PS: I don't have any access to the CI host.

If you can run bash before that, you can run :
export IS_DOCKER_RUNNING =`cat /var/run/docker.pid`
and check if the environment variable is empty or contain an id.

There are several variables involved with this ("does the calling user have permissions" is an important check; "is the Docker I have access to actually local" is another interesting question) and there isn't going to be a magic environment variable that tells you this.
I'd probably try running a throwaway container; something along the lines of
docker run --rm busybox /bin/true
and if it succeeds move forward with other Docker-based end-to-end tests.
Building on #NinaHashemi's answer, if it must be an environment variable, and you can run a shell script before/around your tests (any POSIX shell, not necessarily bash) then you can run
if docker run --rm busybox /bin/true >/dev/null 2>&1; then
export IS_DOCKER_RUNNING=yes
fi

Related

Can a process in Docker container run a command in the host? [duplicate]

How to control host from docker container?
For example, how to execute copied to host bash script?
This answer is just a more detailed version of Bradford Medeiros's solution, which for me as well turned out to be the best answer, so credit goes to him.
In his answer, he explains WHAT to do (named pipes) but not exactly HOW to do it.
I have to admit I didn't know what named pipes were when I read his solution. So I struggled to implement it (while it's actually very simple), but I did succeed.
So the point of my answer is just detailing the commands you need to run in order to get it working, but again, credit goes to him.
PART 1 - Testing the named pipe concept without docker
On the main host, chose the folder where you want to put your named pipe file, for instance /path/to/pipe/ and a pipe name, for instance mypipe, and then run:
mkfifo /path/to/pipe/mypipe
The pipe is created.
Type
ls -l /path/to/pipe/mypipe
And check the access rights start with "p", such as
prw-r--r-- 1 root root 0 mypipe
Now run:
tail -f /path/to/pipe/mypipe
The terminal is now waiting for data to be sent into this pipe
Now open another terminal window.
And then run:
echo "hello world" > /path/to/pipe/mypipe
Check the first terminal (the one with tail -f), it should display "hello world"
PART 2 - Run commands through the pipe
On the host container, instead of running tail -f which just outputs whatever is sent as input, run this command that will execute it as commands:
eval "$(cat /path/to/pipe/mypipe)"
Then, from the other terminal, try running:
echo "ls -l" > /path/to/pipe/mypipe
Go back to the first terminal and you should see the result of the ls -l command.
PART 3 - Make it listen forever
You may have noticed that in the previous part, right after ls -l output is displayed, it stops listening for commands.
Instead of eval "$(cat /path/to/pipe/mypipe)", run:
while true; do eval "$(cat /path/to/pipe/mypipe)"; done
(you can nohup that)
Now you can send unlimited number of commands one after the other, they will all be executed, not just the first one.
PART 4 - Make it work even when reboot happens
The only caveat is if the host has to reboot, the "while" loop will stop working.
To handle reboot, here what I've done:
Put the while true; do eval "$(cat /path/to/pipe/mypipe)"; done in a file called execpipe.sh with #!/bin/bash header
Don't forget to chmod +x it
Add it to crontab by running
crontab -e
And then adding
#reboot /path/to/execpipe.sh
At this point, test it: reboot your server, and when it's back up, echo some commands into the pipe and check if they are executed.
Of course, you aren't able to see the output of commands, so ls -l won't help, but touch somefile will help.
Another option is to modify the script to put the output in a file, such as:
while true; do eval "$(cat /path/to/pipe/mypipe)" &> /somepath/output.txt; done
Now you can run ls -l and the output (both stdout and stderr using &> in bash) should be in output.txt.
PART 5 - Make it work with docker
If you are using both docker compose and dockerfile like I do, here is what I've done:
Let's assume you want to mount the mypipe's parent folder as /hostpipe in your container
Add this:
VOLUME /hostpipe
in your dockerfile in order to create a mount point
Then add this:
volumes:
- /path/to/pipe:/hostpipe
in your docker compose file in order to mount /path/to/pipe as /hostpipe
Restart your docker containers.
PART 6 - Testing
Exec into your docker container:
docker exec -it <container> bash
Go into the mount folder and check you can see the pipe:
cd /hostpipe && ls -l
Now try running a command from within the container:
echo "touch this_file_was_created_on_main_host_from_a_container.txt" > /hostpipe/mypipe
And it should work!
WARNING: If you have an OSX (Mac OS) host and a Linux container, it won't work (explanation here https://stackoverflow.com/a/43474708/10018801 and issue here https://github.com/docker/for-mac/issues/483 ) because the pipe implementation is not the same, so what you write into the pipe from Linux can be read only by a Linux and what you write into the pipe from Mac OS can be read only by a Mac OS (this sentence might not be very accurate, but just be aware that a cross-platform issue exists).
For instance, when I run my docker setup in DEV from my Mac OS computer, the named pipe as explained above does not work. But in staging and production, I have Linux host and Linux containers, and it works perfectly.
PART 7 - Example from Node.JS container
Here is how I send a command from my Node.JS container to the main host and retrieve the output:
const pipePath = "/hostpipe/mypipe"
const outputPath = "/hostpipe/output.txt"
const commandToRun = "pwd && ls-l"
console.log("delete previous output")
if (fs.existsSync(outputPath)) fs.unlinkSync(outputPath)
console.log("writing to pipe...")
const wstream = fs.createWriteStream(pipePath)
wstream.write(commandToRun)
wstream.close()
console.log("waiting for output.txt...") //there are better ways to do that than setInterval
let timeout = 10000 //stop waiting after 10 seconds (something might be wrong)
const timeoutStart = Date.now()
const myLoop = setInterval(function () {
if (Date.now() - timeoutStart > timeout) {
clearInterval(myLoop);
console.log("timed out")
} else {
//if output.txt exists, read it
if (fs.existsSync(outputPath)) {
clearInterval(myLoop);
const data = fs.readFileSync(outputPath).toString()
if (fs.existsSync(outputPath)) fs.unlinkSync(outputPath) //delete the output file
console.log(data) //log the output of the command
}
}
}, 300);
Use a named pipe.
On the host OS, create a script to loop and read commands, and then you call eval on that.
Have the docker container read to that named pipe.
To be able to access the pipe, you need to mount it via a volume.
This is similar to the SSH mechanism (or a similar socket-based method), but restricts you properly to the host device, which is probably better. Plus you don't have to be passing around authentication information.
My only warning is to be cautious about why you are doing this. It's totally something to do if you want to create a method to self-upgrade with user input or whatever, but you probably don't want to call a command to get some config data, as the proper way would be to pass that in as args/volume into docker. Also, be cautious about the fact that you are evaling, so just give the permission model a thought.
Some of the other answers such as running a script. Under a volume won't work generically since they won't have access to the full system resources, but it might be more appropriate depending on your usage.
The solution I use is to connect to the host over SSH and execute the command like this:
ssh -l ${USERNAME} ${HOSTNAME} "${SCRIPT}"
UPDATE
As this answer keeps getting up votes, I would like to remind (and highly recommend), that the account which is being used to invoke the script should be an account with no permissions at all, but only executing that script as sudo (that can be done from sudoers file).
UPDATE: Named Pipes
The solution I suggested above was only the one I used while I was relatively new to Docker. Now in 2021 take a look on the answers that talk about Named Pipes. This seems to be a better solution.
However, nobody there mentioned anything about security. The script that will evaluate the commands sent through the pipe (the script that calls eval) must actually not use eval for the whole pipe output, but to handle specific cases and call the required commands according to the text sent, otherwise any command that can do anything can be sent through the pipe.
That REALLY depends on what you need that bash script to do!
For example, if the bash script just echoes some output, you could just do
docker run --rm -v $(pwd)/mybashscript.sh:/mybashscript.sh ubuntu bash /mybashscript.sh
Another possibility is that you want the bash script to install some software- say the script to install docker-compose. you could do something like
docker run --rm -v /usr/bin:/usr/bin --privileged -v $(pwd)/mybashscript.sh:/mybashscript.sh ubuntu bash /mybashscript.sh
But at this point you're really getting into having to know intimately what the script is doing to allow the specific permissions it needs on your host from inside the container.
My laziness led me to find the easiest solution that wasn't published as an answer here.
It is based on the great article by luc juggery.
All you need to do in order to gain a full shell to your linux host from within your docker container is:
docker run --privileged --pid=host -it alpine:3.8 \
nsenter -t 1 -m -u -n -i sh
Explanation:
--privileged : grants additional permissions to the container, it allows the container to gain access to the devices of the host (/dev)
--pid=host : allows the containers to use the processes tree of the Docker host (the VM in which the Docker daemon is running)
nsenter utility: allows to run a process in existing namespaces (the building blocks that provide isolation to containers)
nsenter (-t 1 -m -u -n -i sh) allows to run the process sh in the same isolation context as the process with PID 1.
The whole command will then provide an interactive sh shell in the VM
This setup has major security implications and should be used with cautions (if any).
Write a simple server python server listening on a port (say 8080), bind the port -p 8080:8080 with the container, make a HTTP request to localhost:8080 to ask the python server running shell scripts with popen, run a curl or writing code to make a HTTP request curl -d '{"foo":"bar"}' localhost:8080
#!/usr/bin/python
from BaseHTTPServer import BaseHTTPRequestHandler,HTTPServer
import subprocess
import json
PORT_NUMBER = 8080
# This class will handles any incoming request from
# the browser
class myHandler(BaseHTTPRequestHandler):
def do_POST(self):
content_len = int(self.headers.getheader('content-length'))
post_body = self.rfile.read(content_len)
self.send_response(200)
self.end_headers()
data = json.loads(post_body)
# Use the post data
cmd = "your shell cmd"
p = subprocess.Popen(cmd, stdout=subprocess.PIPE, shell=True)
p_status = p.wait()
(output, err) = p.communicate()
print "Command output : ", output
print "Command exit status/return code : ", p_status
self.wfile.write(cmd + "\n")
return
try:
# Create a web server and define the handler to manage the
# incoming request
server = HTTPServer(('', PORT_NUMBER), myHandler)
print 'Started httpserver on port ' , PORT_NUMBER
# Wait forever for incoming http requests
server.serve_forever()
except KeyboardInterrupt:
print '^C received, shutting down the web server'
server.socket.close()
If you are not worried about security and you're simply looking to start a docker container on the host from within another docker container like the OP, you can share the docker server running on the host with the docker container by sharing it's listen socket.
Please see https://docs.docker.com/engine/security/security/#docker-daemon-attack-surface and see if your personal risk tolerance allows this for this particular application.
You can do this by adding the following volume args to your start command
docker run -v /var/run/docker.sock:/var/run/docker.sock ...
or by sharing /var/run/docker.sock within your docker compose file like this:
version: '3'
services:
ci:
command: ...
image: ...
volumes:
- /var/run/docker.sock:/var/run/docker.sock
When you run the docker start command within your docker container,
the docker server running on your host will see the request and provision the sibling container.
credit: http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
As Marcus reminds, docker is basically process isolation. Starting with docker 1.8, you can copy files both ways between the host and the container, see the doc of docker cp
https://docs.docker.com/reference/commandline/cp/
Once a file is copied, you can run it locally
docker run --detach-keys="ctrl-p" -it -v /:/mnt/rootdir --name testing busybox
# chroot /mnt/rootdir
#
I have a simple approach.
Step 1: Mount /var/run/docker.sock:/var/run/docker.sock (So you will be able to execute docker commands inside your container)
Step 2: Execute this below inside your container. The key part here is (--network host as this will execute from host context)
docker run -i --rm --network host -v /opt/test.sh:/test.sh alpine:3.7
sh /test.sh
test.sh should contain the some commands (ifconfig, netstat etc...) whatever you need.
Now you will be able to get host context output.
You can use the pipe concept, but use a file on the host and fswatch to accomplish the goal to execute a script on the host machine from a docker container. Like so (Use at your own risk):
#! /bin/bash
touch .command_pipe
chmod +x .command_pipe
# Use fswatch to execute a command on the host machine and log result
fswatch -o --event Updated .command_pipe | \
xargs -n1 -I "{}" .command_pipe >> .command_pipe_log &
docker run -it --rm \
--name alpine \
-w /home/test \
-v $PWD/.command_pipe:/dev/command_pipe \
alpine:3.7 sh
rm -rf .command_pipe
kill %1
In this example, inside the container send commands to /dev/command_pipe, like so:
/home/test # echo 'docker network create test2.network.com' > /dev/command_pipe
On the host, you can check if the network was created:
$ docker network ls | grep test2
8e029ec83afe test2.network.com bridge local
In my scenario I just ssh login the host (via host ip) within a container and then I can do anything I want to the host machine
I found answers using named pipes awesome. But I was wondering if there is a way to get the output of the executed command.
The solution is to create two named pipes:
mkfifo /path/to/pipe/exec_in
mkfifo /path/to/pipe/exec_out
Then, the solution using a loop, as suggested by #Vincent, would become:
# on the host
while true; do eval "$(cat exec_in)" > exec_out; done
And then on the docker container, we can execute the command and get the output using:
# on the container
echo "ls -l" > /path/to/pipe/exec_in
cat /path/to/pipe/exec_out
If anyone interested, my need was to use a failover IP on the host from the container, I created this simple ruby method:
def fifo_exec(cmd)
exec_in = '/path/to/pipe/exec_in'
exec_out = '/path/to/pipe/exec_out'
%x[ echo #{cmd} > #{exec_in} ]
%x[ cat #{exec_out} ]
end
# example
fifo_exec "curl https://ip4.seeip.org"
Depending on the situation, this could be a helpful resource.
This uses a job queue (Celery) that can be run on the host, commands/data could be passed to this through Redis (or rabbitmq). In the example below, this is occurring in a django application (which is commonly dockerized).
https://www.codingforentrepreneurs.com/blog/celery-redis-django/
To expand on user2915097's response:
The idea of isolation is to be able to restrict what an application/process/container (whatever your angle at this is) can do to the host system very clearly. Hence, being able to copy and execute a file would really break the whole concept.
Yes. But it's sometimes necessary.
No. That's not the case, or Docker is not the right thing to use. What you should do is declare a clear interface for what you want to do (e.g. updating a host config), and write a minimal client/server to do exactly that and nothing more. Generally, however, this doesn't seem to be very desirable. In many cases, you should simply rethink your approach and eradicate that need. Docker came into an existence when basically everything was a service that was reachable using some protocol. I can't think of any proper usecase of a Docker container getting the rights to execute arbitrary stuff on the host.

How do I run a command line tool in a Rails app on a docker container?

so I have a working Rails project which is running in a docker container
I have a need to use this tool : https://github.com/google/oauth2l
I need to use this tool within my rails application, take it's output and use it in a post request I'm making via HTTParty.
I'm able to do this already but that's assuming I have oauth2l installed on my system. But since
I'm running my app in production in a container, I'm not sure what the best way to go about this is.
In the docs, there does seem to be a way to 'inject' it into my container but adding those lines to the Dockerfile is leading to syntax errors.
Any ideas on what I could do here?
As a general rule, I think you shouldn't run commands inside the docker container unless you really need it, the best approach is to install what you need while you are building your docker image (with only docker or docker-compose), but in case you really need to enter inside your container here is how I usually do it:
sudo -s
docker container ls (list all containers)
docker container -ti <id of the container> sh
or
docker exec -ti <id of the container> /bin/bash
The sudo -s sometimes is needed depending on how you configure the instance where your container is running, which means that all the commands you are running from now on are like admin. And you may need to execute sh or bash, again depending on your instance.
Hope that helps! 👍
Is better to type all the commands needed in the Dockerfile.
BUt, if you want to run a command within the container, try this:
docker exec -it my-app-web-1 rails db:create db:migrate
docker exec -it my-app-web-1 rails devise:install
These are some examples that you can do.

How to run shell script on Host from jenkins docker container?

I know my issue is already discussed in How to run shell script on host from docker container? but i think my issue is a littel bit more complicated.
At first I try to explain my situation. I'm using jenkins 2.x from a docker container in CentOS VM (Host). In jenkins i created a Job which checks out 3 files from SVN (2 Shell scripts and 1 .jar file). these files will be downloaded in jenkins workspace in jenkins docker container and also on host in a mounted directory like that:
volumes:
- ${DATA_HOME}/jenkins/data:/var/jenkins_home
One of these scripts will be executed from jenkins job and that executes the other script. The second script checks out a SVN directory and does much more stuffs.
So I want a new mounted volume in that directory all results of executed second script will be placed on Host. I think to connect to the host over 'SSH' and execute the script seems to be fine but how can i do that.
I hope I could explain my issue understandable
I will answer regarding "I think to connect to the host over 'SSH' and execute the script seems to be fine but how can i do that"
Pass Host machine Ip to your run command.
docker run --name redis --env pass=pass_my --add-host="hostmachine:192.168.1.23" -dit redis
Now,
docker exec -it redis ash
and run this command. This will do SSH from the container to host
ssh user_name#hostmachine 'ls; bash /home/user_name/Desktop/test.sh; docker run --name db -dit db; docker ps'
If you want something without password then set ssh-key in a container or you can also try
sshpass -p $pass ssh user_name#hostmachine 'ls;/home/user_name/Desktop/test.sh; docker run --name db -d
it db; docker ps'
or if you want to run the script that is inside container you can also do that just pass the script to ssh.
sshpass -p $pass ssh user_name#hostmachine < ./ab.sh
Note: $pass is password of host from ENV and hostmachine is host the we set during run command.
Based on comments in ans:
We can simply install any SSH plugin (SSH) or (Publish over SSH) and
it will work after providing username/password.
Only thing to watch out is that host name resolution does not work and we will need to provide an IP address.
As pointed out this is not the best approach, but sometimes in migration from older systems, we need to move one step at a time and this is the easiest step to take.

How to disable the root access of a docker container?

We have offshore developers who would like to run our server locally but for security reasons, we do not want to give them the server code. So a solution is that they run a Docker container, which is a self-contained version of our server! So no complicated setup on their side! :)
The problem is that it is always possible to access the Linux shell of the Docker instance as root, thus giving access to the source code.
How is it possible to disable the Docker container a root access? Or how can we isolate our source code from the root access?
You can modify your container creating a user (foo for example) and assigning to him the right permissions. Then you can run the docker container on docker run command using the arguments -u foo. If you run for example: docker run --rm -ti -u foo myCustomImage sh. This will open the sh shell with the $ instead of #. Of course on your Dockerfile you must create foo user before.
If you want more restrictions like for example to disable some kernel features, you have available since docker 1.10 the seccomp security feature. Check it out:
https://docs.docker.com/engine/security/seccomp/
Using this you can disable and restrict a lot of system features... and easy example to deny the mkdir command. Create a json file like this (name it as sec.json for example):
{
"defaultAction": "SCMP_ACT_ALLOW",
"syscalls": [
{
"name": "mkdir",
"action": "SCMP_ACT_ERRNO"
}
]
}
Then run your container doing: docker run --rm -ti --security-opt seccomp=/path/on/host/to/sec.json ubuntu:xenial sh. You can check inside the container you are not able to run mkdir command.
Hope this helps.

How to run shell script on host from docker container?

How to control host from docker container?
For example, how to execute copied to host bash script?
This answer is just a more detailed version of Bradford Medeiros's solution, which for me as well turned out to be the best answer, so credit goes to him.
In his answer, he explains WHAT to do (named pipes) but not exactly HOW to do it.
I have to admit I didn't know what named pipes were when I read his solution. So I struggled to implement it (while it's actually very simple), but I did succeed.
So the point of my answer is just detailing the commands you need to run in order to get it working, but again, credit goes to him.
PART 1 - Testing the named pipe concept without docker
On the main host, chose the folder where you want to put your named pipe file, for instance /path/to/pipe/ and a pipe name, for instance mypipe, and then run:
mkfifo /path/to/pipe/mypipe
The pipe is created.
Type
ls -l /path/to/pipe/mypipe
And check the access rights start with "p", such as
prw-r--r-- 1 root root 0 mypipe
Now run:
tail -f /path/to/pipe/mypipe
The terminal is now waiting for data to be sent into this pipe
Now open another terminal window.
And then run:
echo "hello world" > /path/to/pipe/mypipe
Check the first terminal (the one with tail -f), it should display "hello world"
PART 2 - Run commands through the pipe
On the host container, instead of running tail -f which just outputs whatever is sent as input, run this command that will execute it as commands:
eval "$(cat /path/to/pipe/mypipe)"
Then, from the other terminal, try running:
echo "ls -l" > /path/to/pipe/mypipe
Go back to the first terminal and you should see the result of the ls -l command.
PART 3 - Make it listen forever
You may have noticed that in the previous part, right after ls -l output is displayed, it stops listening for commands.
Instead of eval "$(cat /path/to/pipe/mypipe)", run:
while true; do eval "$(cat /path/to/pipe/mypipe)"; done
(you can nohup that)
Now you can send unlimited number of commands one after the other, they will all be executed, not just the first one.
PART 4 - Make it work even when reboot happens
The only caveat is if the host has to reboot, the "while" loop will stop working.
To handle reboot, here what I've done:
Put the while true; do eval "$(cat /path/to/pipe/mypipe)"; done in a file called execpipe.sh with #!/bin/bash header
Don't forget to chmod +x it
Add it to crontab by running
crontab -e
And then adding
#reboot /path/to/execpipe.sh
At this point, test it: reboot your server, and when it's back up, echo some commands into the pipe and check if they are executed.
Of course, you aren't able to see the output of commands, so ls -l won't help, but touch somefile will help.
Another option is to modify the script to put the output in a file, such as:
while true; do eval "$(cat /path/to/pipe/mypipe)" &> /somepath/output.txt; done
Now you can run ls -l and the output (both stdout and stderr using &> in bash) should be in output.txt.
PART 5 - Make it work with docker
If you are using both docker compose and dockerfile like I do, here is what I've done:
Let's assume you want to mount the mypipe's parent folder as /hostpipe in your container
Add this:
VOLUME /hostpipe
in your dockerfile in order to create a mount point
Then add this:
volumes:
- /path/to/pipe:/hostpipe
in your docker compose file in order to mount /path/to/pipe as /hostpipe
Restart your docker containers.
PART 6 - Testing
Exec into your docker container:
docker exec -it <container> bash
Go into the mount folder and check you can see the pipe:
cd /hostpipe && ls -l
Now try running a command from within the container:
echo "touch this_file_was_created_on_main_host_from_a_container.txt" > /hostpipe/mypipe
And it should work!
WARNING: If you have an OSX (Mac OS) host and a Linux container, it won't work (explanation here https://stackoverflow.com/a/43474708/10018801 and issue here https://github.com/docker/for-mac/issues/483 ) because the pipe implementation is not the same, so what you write into the pipe from Linux can be read only by a Linux and what you write into the pipe from Mac OS can be read only by a Mac OS (this sentence might not be very accurate, but just be aware that a cross-platform issue exists).
For instance, when I run my docker setup in DEV from my Mac OS computer, the named pipe as explained above does not work. But in staging and production, I have Linux host and Linux containers, and it works perfectly.
PART 7 - Example from Node.JS container
Here is how I send a command from my Node.JS container to the main host and retrieve the output:
const pipePath = "/hostpipe/mypipe"
const outputPath = "/hostpipe/output.txt"
const commandToRun = "pwd && ls-l"
console.log("delete previous output")
if (fs.existsSync(outputPath)) fs.unlinkSync(outputPath)
console.log("writing to pipe...")
const wstream = fs.createWriteStream(pipePath)
wstream.write(commandToRun)
wstream.close()
console.log("waiting for output.txt...") //there are better ways to do that than setInterval
let timeout = 10000 //stop waiting after 10 seconds (something might be wrong)
const timeoutStart = Date.now()
const myLoop = setInterval(function () {
if (Date.now() - timeoutStart > timeout) {
clearInterval(myLoop);
console.log("timed out")
} else {
//if output.txt exists, read it
if (fs.existsSync(outputPath)) {
clearInterval(myLoop);
const data = fs.readFileSync(outputPath).toString()
if (fs.existsSync(outputPath)) fs.unlinkSync(outputPath) //delete the output file
console.log(data) //log the output of the command
}
}
}, 300);
Use a named pipe.
On the host OS, create a script to loop and read commands, and then you call eval on that.
Have the docker container read to that named pipe.
To be able to access the pipe, you need to mount it via a volume.
This is similar to the SSH mechanism (or a similar socket-based method), but restricts you properly to the host device, which is probably better. Plus you don't have to be passing around authentication information.
My only warning is to be cautious about why you are doing this. It's totally something to do if you want to create a method to self-upgrade with user input or whatever, but you probably don't want to call a command to get some config data, as the proper way would be to pass that in as args/volume into docker. Also, be cautious about the fact that you are evaling, so just give the permission model a thought.
Some of the other answers such as running a script. Under a volume won't work generically since they won't have access to the full system resources, but it might be more appropriate depending on your usage.
The solution I use is to connect to the host over SSH and execute the command like this:
ssh -l ${USERNAME} ${HOSTNAME} "${SCRIPT}"
UPDATE
As this answer keeps getting up votes, I would like to remind (and highly recommend), that the account which is being used to invoke the script should be an account with no permissions at all, but only executing that script as sudo (that can be done from sudoers file).
UPDATE: Named Pipes
The solution I suggested above was only the one I used while I was relatively new to Docker. Now in 2021 take a look on the answers that talk about Named Pipes. This seems to be a better solution.
However, nobody there mentioned anything about security. The script that will evaluate the commands sent through the pipe (the script that calls eval) must actually not use eval for the whole pipe output, but to handle specific cases and call the required commands according to the text sent, otherwise any command that can do anything can be sent through the pipe.
That REALLY depends on what you need that bash script to do!
For example, if the bash script just echoes some output, you could just do
docker run --rm -v $(pwd)/mybashscript.sh:/mybashscript.sh ubuntu bash /mybashscript.sh
Another possibility is that you want the bash script to install some software- say the script to install docker-compose. you could do something like
docker run --rm -v /usr/bin:/usr/bin --privileged -v $(pwd)/mybashscript.sh:/mybashscript.sh ubuntu bash /mybashscript.sh
But at this point you're really getting into having to know intimately what the script is doing to allow the specific permissions it needs on your host from inside the container.
My laziness led me to find the easiest solution that wasn't published as an answer here.
It is based on the great article by luc juggery.
All you need to do in order to gain a full shell to your linux host from within your docker container is:
docker run --privileged --pid=host -it alpine:3.8 \
nsenter -t 1 -m -u -n -i sh
Explanation:
--privileged : grants additional permissions to the container, it allows the container to gain access to the devices of the host (/dev)
--pid=host : allows the containers to use the processes tree of the Docker host (the VM in which the Docker daemon is running)
nsenter utility: allows to run a process in existing namespaces (the building blocks that provide isolation to containers)
nsenter (-t 1 -m -u -n -i sh) allows to run the process sh in the same isolation context as the process with PID 1.
The whole command will then provide an interactive sh shell in the VM
This setup has major security implications and should be used with cautions (if any).
Write a simple server python server listening on a port (say 8080), bind the port -p 8080:8080 with the container, make a HTTP request to localhost:8080 to ask the python server running shell scripts with popen, run a curl or writing code to make a HTTP request curl -d '{"foo":"bar"}' localhost:8080
#!/usr/bin/python
from BaseHTTPServer import BaseHTTPRequestHandler,HTTPServer
import subprocess
import json
PORT_NUMBER = 8080
# This class will handles any incoming request from
# the browser
class myHandler(BaseHTTPRequestHandler):
def do_POST(self):
content_len = int(self.headers.getheader('content-length'))
post_body = self.rfile.read(content_len)
self.send_response(200)
self.end_headers()
data = json.loads(post_body)
# Use the post data
cmd = "your shell cmd"
p = subprocess.Popen(cmd, stdout=subprocess.PIPE, shell=True)
p_status = p.wait()
(output, err) = p.communicate()
print "Command output : ", output
print "Command exit status/return code : ", p_status
self.wfile.write(cmd + "\n")
return
try:
# Create a web server and define the handler to manage the
# incoming request
server = HTTPServer(('', PORT_NUMBER), myHandler)
print 'Started httpserver on port ' , PORT_NUMBER
# Wait forever for incoming http requests
server.serve_forever()
except KeyboardInterrupt:
print '^C received, shutting down the web server'
server.socket.close()
If you are not worried about security and you're simply looking to start a docker container on the host from within another docker container like the OP, you can share the docker server running on the host with the docker container by sharing it's listen socket.
Please see https://docs.docker.com/engine/security/security/#docker-daemon-attack-surface and see if your personal risk tolerance allows this for this particular application.
You can do this by adding the following volume args to your start command
docker run -v /var/run/docker.sock:/var/run/docker.sock ...
or by sharing /var/run/docker.sock within your docker compose file like this:
version: '3'
services:
ci:
command: ...
image: ...
volumes:
- /var/run/docker.sock:/var/run/docker.sock
When you run the docker start command within your docker container,
the docker server running on your host will see the request and provision the sibling container.
credit: http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
As Marcus reminds, docker is basically process isolation. Starting with docker 1.8, you can copy files both ways between the host and the container, see the doc of docker cp
https://docs.docker.com/reference/commandline/cp/
Once a file is copied, you can run it locally
docker run --detach-keys="ctrl-p" -it -v /:/mnt/rootdir --name testing busybox
# chroot /mnt/rootdir
#
I have a simple approach.
Step 1: Mount /var/run/docker.sock:/var/run/docker.sock (So you will be able to execute docker commands inside your container)
Step 2: Execute this below inside your container. The key part here is (--network host as this will execute from host context)
docker run -i --rm --network host -v /opt/test.sh:/test.sh alpine:3.7
sh /test.sh
test.sh should contain the some commands (ifconfig, netstat etc...) whatever you need.
Now you will be able to get host context output.
You can use the pipe concept, but use a file on the host and fswatch to accomplish the goal to execute a script on the host machine from a docker container. Like so (Use at your own risk):
#! /bin/bash
touch .command_pipe
chmod +x .command_pipe
# Use fswatch to execute a command on the host machine and log result
fswatch -o --event Updated .command_pipe | \
xargs -n1 -I "{}" .command_pipe >> .command_pipe_log &
docker run -it --rm \
--name alpine \
-w /home/test \
-v $PWD/.command_pipe:/dev/command_pipe \
alpine:3.7 sh
rm -rf .command_pipe
kill %1
In this example, inside the container send commands to /dev/command_pipe, like so:
/home/test # echo 'docker network create test2.network.com' > /dev/command_pipe
On the host, you can check if the network was created:
$ docker network ls | grep test2
8e029ec83afe test2.network.com bridge local
In my scenario I just ssh login the host (via host ip) within a container and then I can do anything I want to the host machine
I found answers using named pipes awesome. But I was wondering if there is a way to get the output of the executed command.
The solution is to create two named pipes:
mkfifo /path/to/pipe/exec_in
mkfifo /path/to/pipe/exec_out
Then, the solution using a loop, as suggested by #Vincent, would become:
# on the host
while true; do eval "$(cat exec_in)" > exec_out; done
And then on the docker container, we can execute the command and get the output using:
# on the container
echo "ls -l" > /path/to/pipe/exec_in
cat /path/to/pipe/exec_out
If anyone interested, my need was to use a failover IP on the host from the container, I created this simple ruby method:
def fifo_exec(cmd)
exec_in = '/path/to/pipe/exec_in'
exec_out = '/path/to/pipe/exec_out'
%x[ echo #{cmd} > #{exec_in} ]
%x[ cat #{exec_out} ]
end
# example
fifo_exec "curl https://ip4.seeip.org"
Depending on the situation, this could be a helpful resource.
This uses a job queue (Celery) that can be run on the host, commands/data could be passed to this through Redis (or rabbitmq). In the example below, this is occurring in a django application (which is commonly dockerized).
https://www.codingforentrepreneurs.com/blog/celery-redis-django/
To expand on user2915097's response:
The idea of isolation is to be able to restrict what an application/process/container (whatever your angle at this is) can do to the host system very clearly. Hence, being able to copy and execute a file would really break the whole concept.
Yes. But it's sometimes necessary.
No. That's not the case, or Docker is not the right thing to use. What you should do is declare a clear interface for what you want to do (e.g. updating a host config), and write a minimal client/server to do exactly that and nothing more. Generally, however, this doesn't seem to be very desirable. In many cases, you should simply rethink your approach and eradicate that need. Docker came into an existence when basically everything was a service that was reachable using some protocol. I can't think of any proper usecase of a Docker container getting the rights to execute arbitrary stuff on the host.

Resources